用户名: 密码: 验证码:
KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation
详细信息    查看全文
  • 作者:Pietro Baldi (1)
    Massimiliano Berti (1) (2)
    Riccardo Montalto (2)
  • 关键词:37K55 ; 35Q53
  • 刊名:Mathematische Annalen
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:359
  • 期:1-2
  • 页码:471-536
  • 全文大小:
  • 参考文献:1. Baldi, P.: Periodic solutions of forced Kirchhoff equations. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (5) 8, 117-41 (2009)
    2. Baldi, P.: Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type. Ann. I. H. Poincaré (C) Anal. Non Linéaire 30(1), 33-7 (2013) CrossRef
    3. Baldi, P., Berti, M., Montalto, R.: A note on KAM theory for quasi-linear and fully nonlinear KdV. Rend. Lincei Mat. Appl. 24, 437-50 (2013)
    4. Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schr?dinger operators and KAM methods. Commun. Math. Phys. 219, 465-80 (2001) CrossRef
    5. Berti, M., Biasco, L.: Branching of Cantor manifolds of elliptic tori and applications to PDEs. Commun. Math. Phys 305(3), 741-96 (2011) CrossRef
    6. Berti, M., Biasco, P., Procesi, M.: KAM theory for the Hamiltonian DNLW. Ann. Sci. éc. Norm. Supér. (4), t. 46 (2013), fascicule 2, 301-72
    7. Berti, M., Biasco, L., Procesi, M.: KAM for the reversible derivative wave equations. Arch. Ration. Mech. Anal (to appear)
    8. Berti, M., Bolle, P.: Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134, 359-19 (2006) CrossRef
    9. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \(\mathbb{T}^d\) with a multiplicative potential. Eur. J. Math. 15, 229-86 (2013) CrossRef
    10. Berti, M., Bolle, P.: Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25, 2579-613 (2012) CrossRef
    11. Berti, M., Bolle, P., Procesi, M.: An abstract Nash–Moser theorem with parameters and applications to PDEs. Ann. I. H. Poincaré 27, 377-99 (2010) CrossRef
    12. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Int. Math. Res. Notices, no. 11 (1994)
    13. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of \(2D\) linear Schr?dinger equations. Ann. Math. 148, 363-39 (1998) CrossRef
    14. Bourgain, J.: Periodic solutions of nonlinear wave equations, Harmonic analysis and partial differential equations. Chicago Lectures in Math., pp. 69-7. Univ. Chicago Press, Chicago (1999)
    15. Bourgain, J.: Green’s function estimates for lattice Schr?dinger operators and applications. In: Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)
    16. Craig, W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles. In: Panoramas et Synthèses, vol. 9. Société Mathématique de France, Paris (2000)
    17. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equation. Commun. Pure Appl. Math. 46, 1409-498 (1993) CrossRef
    18. Delort, J.-M.: A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein–Gordon equation on \(\mathbb{S}^1\) . Astérisque 341 (2012)
    19. Eliasson, L.H., Kuksin, S.: KAM for non-linear Schr?dinger equation. Ann. Math. 172, 371-35 (2010) CrossRef
    20. Eliasson, L.H., Kuksin, S.: On reducibility of Schr?dinger equations with quasiperiodic in time potentials. Commun. Math. Phys. 286, 125-35 (2009) CrossRef
    21. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schr?dinger equation. Adv. Math. 226(6), 5361-402 (2011) CrossRef
    22. Gentile, G., Procesi, M.: Periodic solutions for a class of nonlinear partial differential equations in higher dimension. Commun. Math. Phys. 289(3), 863-06 (2009) CrossRef
    23. Grebert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307(2), 383-27 (2011) CrossRef
    24. Iooss, G., Plotnikov, P.I., Toland, J.F.: Standing waves on an infinitely deep perfect fluid under gravity. Arch. Rational Mech. Anal. 177(3), 367-78 (2005) CrossRef
    25. Iooss, G., Plotnikov, P.I.: Small divisor problem in the theory of three-dimensional water gravity waves. Mem. Am. Math. Soc. 200, no. 940 (2009)
    26. Iooss, G., Plotnikov, P.I.: Asymmetrical three-dimensional travelling gravity waves. Arch. Rational Mech. Anal. 200(3), 789-80 (2011) CrossRef
    27. Kappeler, T., P?schel, J.: KAM and KdV. Springer, Berlin (2003) CrossRef
    28. Klainermann, S., Majda, A.: Formation of singularities for wave equations including the nonlinear vibrating string. Commun. Pure Appl. Math. 33, 241-63 (1980) CrossRef
    29. Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen. 21(3), 22-7, 95 (1987)
    30. Kuksin, S.: A KAM theorem for equations of the Korteweg–de Vries type. Rev. Math. Math Phys. 10(3), 1-4 (1998)
    31. Kuksin, S.: Analysis of Hamiltonian PDEs. In: Oxford Lecture Series in Mathematics and its Applications, vol. 19. Oxford University Press, Oxford (2000)
    32. Kuksin, S., P?schel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schr?dinger equation. Ann. Math. (2) 143, 149-79 (1996) CrossRef
    33. Lax, P.: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5, 611-13 (1964) CrossRef
    34. Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient. Commun. Pure Appl. Math. 63(9), 1145-172 (2010)
    35. Liu, J., Yuan, X.: A KAM theorem for hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys. 307, 629-73 (2011) CrossRef
    36. Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations-I. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (3) 20(2), 265-15 (1966)
    37. P?schel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Sci. Norm. Sup. Pisa Cl. Sci. (4) 23, 119-48 (1996)
    38. Procesi, C., Procesi, M.: A KAM algorithm for the completely resonant nonlinear Schr?dinger equation (2012, preprint)
    39. Procesi, M., Xu, X.: Quasi-T?plitz Functions in KAM Theorem. SIAM J. Math. Anal. 45(4), 2148-181 (2013) CrossRef
    40. Rabinowitz, P.H.: Periodic solutions of nonlinear hyperbolic partial differential equations, Part I. Commun. Pure Appl. Math. 20, 145-05 (1967) CrossRef
    41. Rabinowitz, P.H.: Periodic solutions of nonlinear hyperbolic partial differential equations. Part II. Commun. Pure Appl. Math. 22, 15-9 (1969) CrossRef
    42. Wang, W.M.: Supercritical nonlinear Schr?dinger equations I: quasi-periodic solutions (2010, preprint)
    43. Wayne, E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479-28 (1990) CrossRef
    44. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24, 1189-228 (2011) CrossRef
  • 作者单位:Pietro Baldi (1)
    Massimiliano Berti (1) (2)
    Riccardo Montalto (2)

    1. Dipartimento di Matematica e Applicazioni “R. Caccioppoli- Università degli Studi Napoli Federico II, Via Cintia, Monte S. Angelo, 80126?, Naples, Italy
    2. SISSA, Via Bonomea 265, 34136?, Trieste, Italy
  • ISSN:1432-1807
文摘
We prove the existence of small amplitude quasi-periodic solutions for quasi-linear and fully nonlinear forced perturbations of the linear Airy equation. For Hamiltonian or reversible nonlinearities we also prove their linear stability. The key analysis concerns the reducibility of the linearized operator at an approximate solution, which provides a sharp asymptotic expansion of its eigenvalues. For quasi-linear perturbations this cannot be directly obtained by a KAM iteration. Hence we first perform a regularization procedure, which conjugates the linearized operator to an operator with constant coefficients plus a bounded remainder. These transformations are obtained by changes of variables induced by diffeomorphisms of the torus and pseudo-differential operators. At this point we implement a Nash–Moser iteration (with second order Melnikov non-resonance conditions) which completes the reduction to constant coefficients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700