IsoBED: a tool for automatic calculation of biologically equivalent fractionation schedules in radiotherapy using IMRT with a simultaneous integrated boost (SIB) technique
详细信息    查看全文
  • 作者:Vicente Bruzzaniti (1)
    Armando Abate (1)
    Massimo Pedrini (1)
    Marcello Benassi (1)
    Lidia Strigari (1)
  • 刊名:Journal of Experimental & Clinical Cancer Research
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:30
  • 期:1
  • 全文大小:7938KB
  • 参考文献:1. Ang KK, Peters LJ: Concomitant boost radiotherapy in the treatment of head and neck cancer. / Semin Radiat Oncol 1992, 2:31鈥?3. CrossRef
    2. Ang KK, Peters LJ, Weber RS: Concomitant boost radiotherapy schedules in the treatment of carcinoma of the oropharynx and nasopharynx. / Int J Radiat Oncol Biol Phys 1990, 19:1339鈥?345. CrossRef
    3. Mohan R, Wu Q, Manning M, Schmidt-Ullrich R: Radiobiological considerations in the design of fractionation strategies for intensity-modulated radiation therapy of head and neck cancers. / Int J Radiat Oncol Biol Phys 2000,46(3):619鈥?30. CrossRef
    4. Dogan N, King S, Emami B, Mohideen N, Mirkovic N, Leybovich LB, Sethi A: Assessment of different IMRT boost delivery methods on target coverage and normal-tissue sparing. / Int J Radiat Oncol Biol Phys 2003, 57:1480鈥?491. CrossRef
    5. Fogliata A, Bolsi A, Cozzi L, Bernier J: Comparative dosimetric evaluation of the simultaneous integrated boost with photon intensity modulation in head and neck cancer patients. / Radiother Oncol 2003, 69:267鈥?75. CrossRef
    6. Strigari L, D'Andrea M, Abate A, Benassi M: A heterogeneous dose distribution in simultaneous integrated boost: the role of the clonogenic cell density on the tumor control probability. / Phys Med Biol 2008, 53:5257鈥?273. CrossRef
    7. Stavrev P, Hristov D: Prostate IMRT fractionation strategies: two-phase treatment versus simultaneous integrated boost. / Radiol Oncol 2003, 37:115鈥?26.
    8. Mohan R, Wu Q, Manning M, Schmidt-Ullrich R: Radiobiological considerations in the design of fractionation strategies for intensity-modulated radiation therapy of head and neck cancers. / Int J Radiat Oncol Biol Phys 2000, 46:619鈥?30. CrossRef
    9. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M: Tolerance of normal tissue to therapeutic irradiation. / Int J Radiat Oncol Biol Phys 1991, 21:109鈥?22.
    10. Strigari L, Arcangeli G, Arcangeli S, Benassi M: Mathematical model for evaluating incidence of acute rectal toxicity during conventional or hypofractionated radiotherapy courses for prostate cancer. / Int J Radiat Oncol Biol Phys 2009, 73:1454鈥?460. CrossRef
    11. Marzi S, Arcangeli G, Saracino B, Petrongari MG, Bruzzaniti V, Iaccarino G, Landoni V, Soriani A, Benassi M: Relationships between rectal wall dose-volume constraints and radiobiologic indices of toxicity for patients with prostate cancer. / Int J Radiat Oncol Biol Phys 2007, 68:41鈥?9. CrossRef
    12. Rancati T, Fiorino C, Gagliardi G, Cattaneo GM, Sanguineti G, Borca VC, Cozzarini C, Fellin G, Foppiano F, Girelli G, Menegotti L, Piazzolla A, Vavassori V, Valdagni R: Fitting late rectal bleeding data using different NTCP models: results from an Italian multi-centric study (AIROPROS0101). / Radiother Oncol 2004, 73:21鈥?2. CrossRef
    13. Abate A, Pressello MC, Benassi M, Strigari L: Comparison of IMRT planning with two-step and one-step optimization: a strategy for improving therapeutic gain and reducing the integral dose. / Phys Med Biol 2009,54(23):7183鈥?8. CrossRef
    14. Strigari L, Benassi M, Arcangeli G, Bruzzaniti V, Giovinazzo G, Marucci L: A novel dose constraint to reduce xerostomia in head-and-neck cancer patients treated with intensity-modulated radiotherapy. / Int J Radiat Oncol Biol Phys 2010, 77:269鈥?76. CrossRef
    15. Marzi S, Iaccarino G, Pasciuti K, Soriani A, Benassi M, Arcangeli G, Giovinazzo G, Benassi M, Marucci L: Analysis of salivary flow and dose-volume modeling of complication incidence in patients with head-and-neck cancer receiving intensity-modulated radiotherapy. / Int J Radiat Oncol Biol Phys 2009, 73:1252鈥?259. CrossRef
    16. Eisbruch A, Ten Haken RK, Kim HM, Marsh LH, Ship JA: Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. / Int J Radiat Oncol Biol Phys 1999, 45:577鈥?87. CrossRef
    17. Chao KS, Deasy JO, Markman J, Haynie J, Perez CA, Purdy JA, Low DA: A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results. / Int J Radiat Oncol Biol Phys 2001, 49:907鈥?16. CrossRef
    18. Mirri MA, Arcangeli G, Benassi M, d'Angelo A, Pinzi V, Caterino M, Rinaldi M, Ceribelli A, Strigari L: Hypofractionated Conformal Radiotherapy (HCRT) for Primary and Metastatic Lung Cancers with Small Dimension. / Strahlenther Onkol 2009, 185:27鈥?3. CrossRef
    19. Theuws JC, Kwa SL, Wagenaar AC, Seppenwoolde Y, Boersma LJ, Damen EM, Muller SH, Baas P, Lebesque JV: Prediction of overall pulmonary function loss in relation to the 3-D dose distribution for patients with breast cancer and malignant lymphoma. / Radiother Oncol 1998, 49:233鈥?43. CrossRef
    20. Kwa SL, Lebesque JV, Theuws JC, Marks LB, Munley MT, Bentel G, Oetzel D, Spahn U, Graham MV, Drzymala RE, Purdy JA, Lichter AS, Martel MK, Ten Haken RK: Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. / Int J Radiat Oncol Biol Phys 1998, 42:1鈥?.
    21. Marks LawrenceB, Yorke EllenD, Jackson Andrew, Ten Haken RandallK, Constine LouisS, Eisbruch Avraham, Bentzen S酶renM, Nam Jiho, Deasy JosephO: Use of Normal Tissue Complication Probability Models in the Clinic. / Int J Radiat Oncol Biol Phys 2010,76(3):Supplement 1: S10-S19.
    22. Deasy J: Poisson formulas for tumor control probability with clonogenic proliferation. / Radiat Res 1996, 145:382鈥?84. CrossRef
    23. Lyman JT: Complication probability as assessed from dose-volume histograms. / Radiat Res Suppl 1985, 8:S13鈥?9. CrossRef
    24. Kutcher GJ, Burman C: Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. / Int J Radiat Oncol Biol Phys 1989, 16:1623鈥?630. CrossRef
    25. Burman C, Kutcher GJ, Emami B, Goitein M: Fitting of normal tissue tolerance data to an analytic function. / Int J Radiat Oncol Biol Phys 1991, 21:123鈥?35.
    26. 脜gren A, Brahme A, Turesson I: Optimization of uncomplicated control for head and neck tumors. / Int J Radiat Oncol Biol Phys 1990, 19:1077鈥?085. CrossRef
    27. Kallman P, Agren A, Brahme A: Tumour and normal tissue responses to fractionated non-uniform dose delivery. / Int J Radiat Biol 1992, 62:249鈥?62. CrossRef
    28. Fowler J: The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. / Acta Oncol 2005, 44:265鈥?76. CrossRef
    29. Fowler JF, Chappell RJ, Ritter MA: Is 伪/尾 for prostate tumors really low? / Int J Radiat Oncol Biol Phys 2001, 50:1021鈥?031. CrossRef
    30. Sanchez-Nieto B, Nahum AE: BIOPLAN: software for the biological evaluation of radiotherapy treatment plans. / Med Dosim 2000, 25:71鈥?6. CrossRef
    31. Warkentin B, Stavrev P, Stavreva N, Field C, Fallone BG: A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets. / J Appl Clin Med Phys 2004, 5:50鈥?3. CrossRef
    32. El Naqa I, Suneja G, Lindsay PE, Hope AJ, Alaly JR, Vicic M, Bradley JD, Apte A, Deasy JO: Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships. / Phys Med Biol 2006, 51:5719鈥?735. CrossRef
    33. Deasy JO, Blanco AI, Clark VH: CERR: a computational environment for radiotherapy research. / Med Phys 2003, 30:979鈥?85. CrossRef
    34. Gay HA, Niemierko A: A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. / Phys Med 2007, 23:115鈥?25. CrossRef
    35. Pyakuryal A, Myint WK, Gopalakrishnan M, Jang S, Logemann JA, Mittal BB: A computational tool for the efficient analysis of dose-volume histograms for radiation therapy treatment plans. / J Appl Clin Med Phys 2010, 11:137鈥?57.
    36. Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, Xia P, Xiao Y, Xing L, Yu CX: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. / Med Phys 2003, 30:2089鈥?115. CrossRef
    37. Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Van Dyke J: American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning. / Med Phys 1998, 25:1773鈥?829. CrossRef
    38. Park C, Papiez L, Zhang S, Story M, Timmerman RD: Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. / Int J Radiat Oncol Biol Phys 2008, 70:847鈥?2. CrossRef
    39. Fowler JF: Linear quadratics is alive and well: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847鈥?52. / Int J Radiat Oncol Biol PhysPhys 2008, 72:957. CrossRef
  • 作者单位:Vicente Bruzzaniti (1)
    Armando Abate (1)
    Massimo Pedrini (1)
    Marcello Benassi (1)
    Lidia Strigari (1)

    1. Laboratory of Medical Physics and Expert System, Regina Elena Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
  • ISSN:1756-9966
文摘
Background An advantage of the Intensity Modulated Radiotherapy (IMRT) technique is the feasibility to deliver different therapeutic dose levels to PTVs in a single treatment session using the Simultaneous Integrated Boost (SIB) technique. The paper aims to describe an automated tool to calculate the dose to be delivered with the SIB-IMRT technique in different anatomical regions that have the same Biological Equivalent Dose (BED), i.e. IsoBED, compared to the standard fractionation. Methods Based on the Linear Quadratic Model (LQM), we developed software that allows treatment schedules, biologically equivalent to standard fractionations, to be calculated. The main radiobiological parameters from literature are included in a database inside the software, which can be updated according to the clinical experience of each Institute. In particular, the BED to each target volume will be computed based on the alpha/beta ratio, total dose and the dose per fraction (generally 2 Gy for a standard fractionation). Then, after selecting the reference target, i.e. the PTV that controls the fractionation, a new total dose and dose per fraction providing the same isoBED will be calculated for each target volume. Results The IsoBED Software developed allows: 1) the calculation of new IsoBED treatment schedules derived from standard prescriptions and based on LQM, 2) the conversion of the dose-volume histograms (DVHs) for each Target and OAR to a nominal standard dose at 2Gy per fraction in order to be shown together with the DV-constraints from literature, based on the LQM and radiobiological parameters, and 3) the calculation of Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) curve versus the prescribed dose to the reference target.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700