Dynamics of accumulation of coumarin-related compounds in leaves of Matricaria chamomilla after methyl jasmonate elicitation
详细信息    查看全文
  • 作者:Zuzana Dučaiová ; Matúš Sajko ; Silvia Mihaličová ; Miroslav Repčák
  • 关键词:Coumarin ; related compounds ; Matricaria chamomilla L. ; Methyl jasmonate ; Oxidative stress
  • 刊名:Plant Growth Regulation
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:79
  • 期:1
  • 页码:81-94
  • 全文大小:937 KB
  • 参考文献:Ahn SY, Kim SA, Cho KS, Yun HK (2014) Expression of genes related to flavonoid and stilbene synthesis as affected by signalling chemicals and Botrytis cinerea in grapevines. Biol Plant 58:758–767. doi:10.​1007/​s10535-014-0437-2
    Ali MB, Yu KW, Hahn EJ, Paek KY (2006) Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep 6:613–620. doi:10.​1007/​s00299-005-0065-6 CrossRef
    Ananieva K, Ananiev ED, Mishev K, Georgieva K, Malbeck J, Kaminek M, Van Staden J (2007) Methyl jasmonate is a more effective senescence-promoting factor in Cucurbita pepo (zucchini) cotyledons when compared with darkness at the early stage of senescence. J Plant Physiol 164:1179–1187. doi:10.​1016/​j.​jplph.​2006.​07.​008 CrossRef PubMed
    Benedek B, Gjoncaj N, Saukel J, Kopp B (2007) Distribution of phenolic compounds in Middleeuropean taxa of the Achillea millefolium L. Aggreg Chem Biodivers 4:849–857. doi:10.​1002/​cbdv.​200790072 CrossRef
    Bradford MMA (1976) Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.​1016/​0003-2697(76)90527-3 CrossRef PubMed
    Cao S, Cai Y, Yang Z, Joyce DC, Zheng Y (2014) Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit. Food Chem 145:86–89. doi:10.​1016/​j.​foodchem.​2013.​08.​019 CrossRef PubMed
    Chandra A, Dubey A (2010) Effect of ploidy levels on the activities of Δ1-pyrroline-5-carboxylate synthetase, superoxide dismutase and peroxidase in Cenchrus species grown under water stress. Plant Physiol Biochem 48:27–34. doi:10.​1016/​j.​plaphy.​2009.​10.​003 CrossRef PubMed
    Cheong J-J, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413. doi:10.​1016/​S0168-9525(03)00138-0 CrossRef PubMed
    Cohen H, Fait A, Tel-Zur N (2013) Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC Plant Biol 13:173. doi:10.​1186/​1471-2229-13-173 CrossRef PubMed PubMedCentral
    Czerpak R, Piotrowska A, Szulecka K (2006) Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant 28:195–203. doi:10.​1007/​BF02706531 CrossRef
    Deng B, Du W, Liu Ch, Sun W, Tian S, Dong H (2012) Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids? Plant Growth Regul 66:37–47. doi:10.​1007/​s10725-011-9626-6 CrossRef
    Divya P, Puthusseri B, Neelwarne B (2014) The effect of plant regulators on the concentration of carotenoids and phenolic compounds in foliage of coriander. LWT Food Sci Technol 56:101–110. doi:10.​1016/​j.​lwt.​2013.​11.​012 CrossRef
    dos Santos WD, Ferrarese MDLL, Finger A, Teixeira ACN, Ferrarese-Filho O (2004) Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid. J Chem Ecol 30:1203–1212. doi:10.​1023/​B:​JOEC.​0000030272.​83794.​f0 CrossRef PubMed
    Eliašová A, Repčák M, Pastírová A (2004) Quantitative changes of secondary metabolites of Matricaria chamomilla by abiotic stress. Z Natforsch C Biosci 59c:543–548. doi:0939Ð5075/2004/0700Ð0543
    Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620. doi:10.​1016/​0003-2697(76)90488-7 CrossRef PubMed
    Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. doi:10.​1016/​0076-6879(90)86134-H CrossRef PubMed
    Franke R, Schilcher H (2005) Chamomile: industrial profile. Taylor & Francis, New York
    Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperm during aging. Aquat Bot 12:345–354. doi:10.​1016/​0304-3770(81)90047-4 CrossRef
    Jung S (2004) Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. Plant Physiol Biochem 42:225–231. doi:10.​1016/​j.​plaphy.​2004.​01.​001
    Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580. doi:10.​1016/​j.​phytochem.​2009.​07.​018
    Kováčik J, Klejdus B, Grúz J, Malčovská S, Hedbavny J (2010a) Role of ploidy in cadmium and nickel uptake by Matricaria chamomilla plants. Food Chem Toxicol 48:2109–2114. doi:10.​1016/​j.​fct.​2010.​05.​012 CrossRef PubMed
    Kováčik J, Klejdus B, Hedbavny J, Zoń J (2010b) Copper uptake is differentially modulated by phenylalanine ammonia-lyase inhibition in diploid and tetraploid chamomile. J Agric Food Chem 58:10270–10276. doi:10.​1021/​jf101977v CrossRef PubMed
    Kumari GJ, Sudhakar C (2003) Effect of jasmonic acid on groundnut during early seedling growth. Biol Plant 43:453–456. doi:10.​1023/​B:​BIOP.​0000023894.​72554.​b2
    Liang Z-S, Yang D-F, Liang X, Zhang Y-H, Liu Y, Liu F-H (2012) Roles of reactive oxygen species in methyl-jasmonate and nitric oxide-induced tanshinone production in Salvia mittiorrhiza hairy roots. Plant Cell Rep 31:873–883. doi:10.​1007/​s00299-011-1208-6 CrossRef PubMed
    Lin HC, Tsai SH, Chen CS, Chang YC, Lee CM, Lai ZY, Lin CM (2008) Structure-activity relationships of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities. Biochem Pharmacol 75:1416–1425. doi:10.​1016/​j.​bcp.​2007.​11.​023 CrossRef PubMed
    Monzón GC, Pinedo M, Lamattina L, de la Canal L (2012) Sunflower root growth regulation: the role of jasmonic acid and its relation with auxins. Plant Growth Regul 66:129–136. doi:10.​1007/​s10725-011-9636-4 CrossRef
    Noir S, Bömer M, Takahashi N, Ishida T, Tsui T-L, Balbi V, Shanahan H, Sugimoto K, Devoto A (2013) Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiol 161:1930–1951. doi:10.​1104/​pp.​113.​214908
    Onrubia M, Moyano E, Bonfill M, Cusidó RM, Goossens A (2013) Palazón J (2013) Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. J Plant Physiol 170:211–219. doi:10.​1016/​j.​jplph.​2012.​09.​004 CrossRef PubMed
    Ordoñez AAL, Gomez JD, Vattuone MA, Isla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97:452–458. doi:10.​1016/​j.​foodchem.​2005.​05.​024 CrossRef
    Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the introduction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191. doi:10.​1105/​tcp.​13.​1.​179 CrossRef PubMed PubMedCentral
    Pérez-Pérez ME, Lemaire SD, Crespo JL (2012) Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160:156–164. doi:10.​1104/​pp.​112.​199992 CrossRef PubMed PubMedCentral
    Petruľová V, Dučaiová Z, Repčák M (2014) Short-term UV-B dose stimulates production of protective metabolites in Matricaria chamomilla leaves. Photochem Photobiol 90:1061–1068. doi:10.​1111/​php.​12300 PubMed
    Ram M, Prasad KV, Singh SK, Hada BS, Kumar S (2013) Influence of salicylic acid and methyl jasmonate elicitation on anthocyanin production in callus cultures of Rosa hybrid L. Plant Cell Tissue Organ 113:459–467. doi:10.​1007/​s11240-013-0287-1 CrossRef
    Repčák M, Krausová T (2009) Phenolic glucosides in the course of ligulate flower development in diploid and tetraploid Matricaria chamomilla. Food Chem 116:19–22. doi:10.​1016/​j.​foodchem.​2009.​01.​085 CrossRef
    Repčák M, Suvák M (2013) Methyl jasmonate and Echinothrips americanus regulate coumarin accumulation in leaves of Matricaria chamomilla. Biochem Syst Ecol 47:38–41. doi:10.​1016/​j.​bse.​2012.​10.​009 CrossRef
    Repčák M, Paľove-Balang P, Dučaiová Z, Sajko M, Bendek F (2014) High nitrogen supply affects the metabolism of Matricaria chamomilla leaves. Plant Growth Regul 73:147–153. doi:10.​1007/​s10725-013-9876-6 CrossRef
    Rudell DR, Mattheis JP, Fan X, Fellman JK (2002) Merhyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in ‘Fuji’ apples. J Am Soc Hortic Sci 127:435–441
    Sahu R, Gangopadhyay M, Dewanjee S (2013) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activity in Solenostemon scutellarioides. Acta Physiol Plant 35:1473–1481. doi:10.​1007/​s11738-012-1188-3 CrossRef
    Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 1–2:136–138. doi:10.​1016/​j.​ijpharm.​2010.​09.​035 CrossRef
    Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63:811–822. doi:10.​1111/​j.​1365-313X.​2010.​04283.​x CrossRef PubMed PubMedCentral
    Singleton VL, Rossi J (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158
    Sircar D, Cardoso HG, Mukherjee Ch, Mitra A, Arnholdt-Schmitt B (2012) Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L. J Plant Physiol 169:657–663. doi:10.​1016/​j.​jplph.​2011.​11.​019 CrossRef PubMed
    Stojakowska A, Malarz J, Kisiel W (2002) Salicylate and methyl jasmonate differentially influence diacetylene accumulation pattern in transformed roots of feverfew. Plant Sci 163:1147–1152. doi:10.​1016/​S0168-9452(02)00328-X CrossRef
    Suzuki N, Mittler R (2012) Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 53:2269–2276. doi:10.​1016/​j.​freeradbiomed.​2012.​10.​538 CrossRef PubMed
    Takahashi I, Hara M (2014) Enhancement of strch accumulation in plants by exogenously applied methyl jasmonate. Plant Biotehnol Rep 8:143–149. doi:10.​1007/​s11816-013-0304-1
    Tassoni A, Durante L, Ferri M (2012) Combined elicitation of methyl-jasmonate and red light on stilbene and anthocyanin biosynthesis. J Plant Physiol 169:775–781. doi:10.​1016/​j.​jplph.​2012.​01.​017 CrossRef PubMed
    Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K-I (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96:15362–153679. doi:10.​1073/​pnas.​96.​26.​15362 CrossRef PubMed PubMedCentral
    Wang H, Ma Ch, Li Z, Ma L, Wang H, Ye H, Xu G, Liu B (2010) Effects of exogenous methyl jasmonate on artemisinin biosynthesis and secondary metabolites in Artemisia annua L. Ind Crop Prod 31:214–218. doi:10.​1016/​j.​indcrop.​2009.​10.​008 CrossRef
    Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058. doi:10.​1093/​aob/​mct067
    Wellburn AR (1994) The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. J Plant Physiol 144:307–313. doi:10.​1016/​S0176-1617(11)81192-2
    Zhang Y, Turner JG (2008) Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS One 11:e3699. doi:10.​1371/​journal.​pone.​0003699 CrossRef
    Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49:1092–1111. doi:10.​1093/​pcp/​pcn086 CrossRef PubMed
    Zhang X-Y, Hu Ch-G, Yao J-L (2010) Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J Plant Physiol 167:88–94. doi:10.​1016/​j.​jplph.​2009.​07.​006 CrossRef PubMed
  • 作者单位:Zuzana Dučaiová (1) (2)
    Matúš Sajko (1)
    Silvia Mihaličová (1)
    Miroslav Repčák (1)

    1. Department of Botany, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University, Mánesova 23, 041 54, Košice, Slovakia
    2. Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5087
文摘
The effect of methyl jasmonate (MeJA) treatment on diploid and tetraploid plants of Matricaria chamomilla and the changes of the main physiological parameters and secondary metabolites content was studied. Leaf rosettes from 7-week-old plants were harvested at four different time points (24, 48, 72, 96 h) after foliar application of 0.4 mM MeJA. The treatment led to a moderate biomass accumulation accompanied by an accumulation of photosynthetic pigments and decrease in the total soluble proteins. The content of hydrogen peroxide and superoxide radical was most elevated at 24 and 72 h after the treatment. Although the values of stress parameters were higher in tetraploid plants (such as in control so in treated plants), their total increase after the MeJA application was similar. The absolute level of total soluble phenols and flavonoids in the controls was similar in both cultivars and their content was enhanced in 24- and 48-h variants, more rapidly in diploid plants. MeJA has been found to trigger different responses of the secondary metabolites accumulation. Almost all studied metabolites were higher in control plants in the tetraploid cultivar, but their biosynthesis was more stimulated in diploids. Significant changes, mainly increasing trends with a maximum between 24 and 48 h after elicitation, in the content of free coumarin herniarin and its glycosidic precursors (Z)- and (E)-2-β-d-glucopyranosyloxy-4-methoxycinnamic acid were observed. The umbelliferone level increased over time. The maximum values for chlorogenic acid and 1,5-dicaffeoylquinic acid were at 24-h and between the 24–72 h time points. Among dicycloethers, the amounts of (E)-form decreased with time, and for (Z)-form an opposite trend was observed, with a maximum of 96 h for diploid and 24 h for tetraploid after elicitation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700