Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries
详细信息    查看全文
  • 作者:Dawei Su (1) (2)
    Shixue Dou (1)
    Guoxiu Wang (2)
  • 关键词:msoporous material ; faceted crystal ; anode material ; lithium ion battery
  • 刊名:Nano Research
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:7
  • 期:5
  • 页码:794-803
  • 全文大小:
  • 参考文献:1. Yuan, C. Z.; Xiong, S. L.; Zhang, X. G.; Shen, L. F.; Zhang, F.; Gao, B.; Su, L. H. Template-free synthesis of ordered mesoporous NiO/poly (sodium-4-styrene sulfonate) functionalized carbon nanotubes composite for electrochemical capacitors. / Nano Res. 2009, / 2, 722鈥?32. CrossRef
    2. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. / Nature 2008, / 453, 638鈥?41. CrossRef
    3. Crossland, E. J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, J. A.; Snaith, H. J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. / Nature 2013, / 495, 215鈥?19. CrossRef
    4. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weiss枚rtel, F.; Salbeck, J.; Spreitzer, H.; Gr盲tzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. / Nature 1998, / 395, 583鈥?85. CrossRef
    5. Mamak, M.; Coombs, N.; Ozin, G. Self-assembling solid oxide fuel cell materials: Mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions. / J. Am. Chem. Soc. 2000, / 122, 8932鈥?939. CrossRef
    6. Zhu, K.; Wang, D. H.; Liu, J. Self-assembled materials for catalysis. / Nano Res. 2009, / 2, 1鈥?9. CrossRef
    7. Zhang, Q.; Joo, J.-B.; Lu, Z. D.; Dahl, M.; Oliveira, D. Q. L.; Ye, M. M.; Yin, Y. D. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. / Nano Res. 2011, / 4, 103鈥?14. CrossRef
    8. Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. / Nano Lett. 2008, / 8, 265鈥?70. CrossRef
    9. Su, D. W.; Kim, H. S.; Kim, W. S.; Wang, G. X. Mesoporous nickel oxide nanowires: Hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance. / Chem.-Eur. J. 2012, / 18, 8224鈥?229. CrossRef
    10. Su, D. W.; Ford, M.; Wang, G. X. Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage. / Sci. Rep. 2012, / 2, 924. CrossRef
    11. Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. I. 伪-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. / Adv. Mater. 2005, / 17, 582鈥?86. CrossRef
    12. Xu, J. M.; Wang, A. Q.; Wang, X. D.; Su, D. S.; Zhang, T. Synthesis, characterization, and catalytic application of highly ordered mesoporous alumina-carbon nanocomposites. / Nano Res. 2011, / 4, 50鈥?0. CrossRef
    13. Sun, Z.; Yuan, H.; Liu, Z.; Han, B.; Zhang, X. A highly efficient chemical sensor material for H2S: 伪-Fe2O3 nanotubes fabricated using carbon nanotube templates. / Adv. Mater. 2005, / 17, 2993鈥?997. CrossRef
    14. Jiao, F.; Harrison, A.; Jumas, J.-C.; Chadwick, A. V.; Kockelmann, W.; Bruce, P. G. Ordered mesoporous Fe2O3 with crystalline walls. / J. Am. Chem. Soc. 2006, / 128, 5468鈥?474. CrossRef
    15. Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. / Nano Res. 2011, / 4, 115鈥?23. CrossRef
    16. Li, Q.; Yang, J. P.; Feng, D.; Wu, Z. X.; Wu, Q. L.; Park, S. S.; Ha, C.-S.; Zhao, D. Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. / Nano Res. 2010, / 3, 632鈥?42. CrossRef
    17. Liu, L.; Kou, H.-Z.; Mo, W. L.; Liu, H. J.; Wang, Y. Q. Surfactant-assisted synthesis of 伪-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. / J. Phys. Chem. B 2006, / 110, 15218鈥?5223. CrossRef
    18. Jia, C. J.; Sun, L. D.; Yan, Z. G.; You, L. P.; Luo, F.; Han, X. D.; Pang, Y. C.; Zhang, Z.; Yan, C. H. Single-crystalline iron oxide nanotubes. / Angew. Chem. Int. Ed. 2005, / 117, 4402鈥?407. CrossRef
    19. Reitz, C.; Suchomski, C.; Weidmann, C.; Brezesinski, T. Block copolymer-templated BiFeO3 nanoarchitectures composed of phase-pure crystallites intermingled with a continuous mesoporosity: Effective visible-light photocatalysts? / Nano Res. 2011, / 4, 414鈥?24. CrossRef
    20. Zhang, D. Q.; Li, G. S.; Yang, X. F.; Yu, J. C. A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. / Chem. Commun. 2009, 4381鈥?383.
    21. Leng, M.; Liu, M. Z.; Zhang, Y. B.; Wang, Z. Q.; Yu, C.; Yang, X. G.; Zhang, H. J.; Wang, C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: Synthesis and enhanced catalytic CO oxidation activity. / J. Am. Chem. Soc. 2010, / 132, 17084鈥?7087. CrossRef
    22. Xie, X. W.; Li, Y.; Liu, Z.-Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. / Nature 2009, / 458, 746鈥?49. CrossRef
    23. Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. / J. Am. Chem. Soc. 2008, / 130, 16136鈥?6137. CrossRef
    24. Xiong, S. L.; Yuan, C. Z.; Zhang, X. G.; Xi, B. J.; Qian, Y. T. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. / Chem.-Eur. J. 2009, / 15, 5320鈥?326. CrossRef
    25. Xiong, S. L.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)路0.11H2O and their lithium-storage properties. / Adv. Funct. Mater. 2012, / 22, 861鈥?71. CrossRef
    26. Liu, D. Q.; Wang, X.; Wang, X. B.; Tian, W.; Bando, Y.; Golberg, D. Co3O4 nanocages with highly exposed {110} facets for high-performance lithium storage. / Sci. Rep. 2013, / 3, 2543.
    27. Xiao, Y.; Hu, C. W.; Cao, M. H. High lithium storage capacity and rate capability achieved by mesoporous Co3O4 hierarchical nanobundles. / J. Power Sources 2014, / 247, 49鈥?6. CrossRef
    28. Venugopal, N.; Lee, D.-J.; Lee, Y. J.; Sun, Y.-K. Self-assembled hollow mesoporous Co3O4 hybrid architectures: A facile synthesis and application in Li-ion batteries. / J. Mater. Chem. A 2013, / 1, 13164鈥?3170. CrossRef
    29. Xia, X. H.; Tu, J. P.; Xiang, J. Y.; Huang, X. H.; Wang, X. L.; Zhao, X. B. Hierarchical porous cobalt oxide array films prepared by electro-deposition through polystyrene sphere template and their applications for lithium ion batteries. / J. Power Sources 2010, / 195, 2014鈥?022. CrossRef
    30. Hu, L.; Yan, N.; Chen, Q. W.; Zhang, P.; Zhong, H.; Zheng, X. R.; Li, Y.; Hu, X. Y. Fabrication based on the Kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage. / Chem.-Eur. J. 2012, / 18, 8971鈥?977. CrossRef
    31. Chen, J.; Xia, X.-H.; Tu, J.-P.; Xiong, Q.-Q.; Yu, Y.-X.; Wang, X.-L.; Gu, C.-D. Co3O4/C core/shell nanowire arrays as advanced materials for lithium ion batteries. / J. Mater. Chem. 2012, / 22, 15056鈥?5061. CrossRef
    32. Yue, W. B.; Xu, X. X.; Irvine, J. T. S.; Attidekou, P. S.; Liu, C.; He, H. Y.; Zhao, D. Y.; Zhou, W. Z. Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. / Chem. Mater. 2009, / 21, 2540鈥?546. CrossRef
    33. Bian, Z. F.; Zhu, J.; Wen, J.; Cao, F. L; Huo, Y. N.; Qian, X. F.; Cao, Y.; Shen, M. Q.; Li, H. X.; Lu, Y. F. Single-crystal-like titania mesocages. / Angew. Chem. Int. Ed. 2011, / 50, 1105鈥?108. CrossRef
    34. Li, L. S.; Sun, N. J.; Huang, Y. Y.; Qin, Y.; Zhao, N. N.; Gao, J. N.; Li, M. X.; Zhou, H. H.; Qi, L. M. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. / Adv. Funct. Mater. 2008, / 18, 1194鈥?201. CrossRef
    35. Wang, T. X.; C枚lfen, H.; Antonietti, M. Nonclassical crystallization: Mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. / J. Am. Chem. Soc. 2005, / 127, 3246鈥?247. CrossRef
    36. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. / Nature 2000, / 407, 496鈥?99. CrossRef
    37. Barreca D.; Cruz-Yusta M.; Gasparotto A.; Maccato C.; Morales J.; Pozza A.; Sada C.; S谩nchez L.; Tondello E. Cobalt oxide nanomaterials by vapor-phase synthesis for fast and reversible lithium storage. / J. Phys. Chem. C 2010, / 114, 10054鈥?0060. CrossRef
    38. Lou X. W.; Deng D.; Lee J. Y.; Archer L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. / J. Mater. Chem. 2008, / 18, 4397鈥?401. CrossRef
    39. Edstr枚m, K.; Gustafsson, T.; Thomas, J. O. The cathode-electrolyte interface in the Li-ion battery. / Electrochim. Acta 2004, / 50, 397鈥?03. CrossRef
    40. Poizot, P.; Laruelle, S.; Grugeon, S.; Tarascon, J.-M. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. / J. Electrochem. Soc. 2002, / 149, A1212鈥揂1217. CrossRef
    41. Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. / Adv. Funct. Mater. 2003, / 13, 621鈥?25. CrossRef
    42. Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. / Nat. Mater. 2005, / 4, 805鈥?15. CrossRef
    43. Wang, G.; Liu, H.; Horvat, J.; Wang, B.; Qiao, S.; Park, J.; Ahn, H. Highly ordered mesoporous cobalt oxide nanostructures: Synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. / Chem.-Eur. J. 2010, / 16, 11020鈥?1027. CrossRef
    44. Feng, J.; Zeng, H. C. Size-controlled growth of Co3O4 nanocubes. / Chem. Mater. 2003, / 15, 2829鈥?835. CrossRef
    45. Xu R.; Zeng, H. C. Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95 掳C. / J. Phys. Chem. B 2003, / 107, 926鈥?30. CrossRef
    46. Varghese, B.; Zhang, Y. S.; Dai, L.; Tan, V. B. C.; Lim, C. T.; Sow, C.-H. Structure-mechanical property of individual cobalt oxide nanowires. / Nano Lett. 2008, / 8, 3226鈥?232. CrossRef
    47. Zhou, Z.-Y.; Tian, N.; Li, J.-T.; Broadwell, I.; Sun, S.-G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. / Chem. Soc. Rev. 2011, / 40, 4167鈥?185. CrossRef
    48. Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. Role of crystalline defects in electrocatalysis: Mechanism and kinetics of co adlayer oxidation on stepped platinum electrodes. / J. Phys. Chem. B 2002, / 106, 12938鈥?2947. CrossRef
    49. Zhang, D. Q.; Wen, M. C.; Zhang, P.; Zhu, J.; Li, G. S.; Li, H. X. Microwave-induced synthesis of porous single-crystal-like TiO2 with excellent lithium storage properties. / Langmuir 2012, / 28, 4543鈥?547. CrossRef
    50. Chen, J. S.; Liu, H.; Qiao, S. Z.; Lou, X. W. Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. / J. Mater. Chem. 2011, / 21, 5687鈥?692. CrossRef
  • 作者单位:Dawei Su (1) (2)
    Shixue Dou (1)
    Guoxiu Wang (2)

    1. Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
    2. Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
  • ISSN:1998-0000
文摘
Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications. Herein, we demonstrate a general synthetic method to prepare mesocrystal Co3O4 with predominantly exposed {111} reactive facets by the in situ thermal decomposition from Co(OH)2 nanoplatelets. The mesocrystal feature was identified by field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and N2 isotherm analyses. When applied as anode material in lithium-ion batteries, mesocrystal Co3O4 nanoplatelets delivered a high specific capacity and an outstanding high rate performance. The superior electrochemical performance should be ascribed to the predominantly exposed {111} active facets and highly accessible surfaces. This synthetic strategy could be extended to prepare other mesocrystal functional nanomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700