Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences
详细信息    查看全文
  • 作者:Marina Grabiele (1) mgrabiele@agr.unne.edu.ar
    Laura Chalup (1)
    Germán Robledo (12)
    Guillermo Seijo (12)
  • 关键词:Arachis – Diploid parentals – Single origin – cpDNA – NTS 5S rDNA
  • 刊名:Plant Systematics and Evolution
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:298
  • 期:6
  • 页码:1151-1165
  • 全文大小:402.8 KB
  • 参考文献:1. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge
    2. Bechara MD, Moretzsohn MC, Palmieri DA, Monteiro JP, Bacci M Jr, Martins J Jr, Valls JFM, Lopes CR, Gimenes MA (2010) Phylogenetic relationships in genus Arachis based on ITS and 5.8S rDNA sequences. BMC Plant Biol 10:255
    3. Bonavia D (1982) Precerámico Peruano. Los Gavilanes. Mar, Desierto y Oasis en La Historia del Hombre. Corporación Financiera de Desarrollo S.A. COFIDE and Instituto Arqueológico Alemán, Lima
    4. Brochmann C, Nilsson T, Gabrielsen TM (1996) A classic example of postglacial allopolyploid speciation re-examined using RAPD markers and nucleotide sequences: Saxifraga osloensis (Saxifragaceae). Symbolae Botanicae Upsaliensis 31:75–89
    5. Burow MD, Simpson CE, Faries MW, Starr JL, Paterson A (2009) Molecular biogeographic study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome 52:107–119
    6. Dillehay TD, Rossen J, Andres TC, Williams DE (2007) Preceramic adoption of peanut, squash, and cotton in northern Peru. Science 316:1890–1893
    7. Doyle JJ, Doyle JL (1987) Isolation of DNA from fresh plant tissue. Focus 12:13–15
    8. Erickson HC, Tomlin EM, Swain MAP (1983) Modeling and role-modeling: a theory and paradigm for nursing. Prentice-Hall, Inc, Englewood Cliffs
    9. Fávero AP, Simpson CE, Valls JFM, Vello NA (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipa?nsis, A. duranensis, and A. hypogaea. Crop Sci 46:1546–1552
    10. Fernández A, Krapovickas A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8:187–220
    11. Fernández M, Ruiz ML, Linares C, Fominaya A, Pérez de la Vega M (2005) 5S rDNA genome regions of Lens species. Genome 48:937–942
    12. Friend SA, Quandt D, Tallury SP, Stalker HT, Hilu KW (2010) Species, genomes, and section relationships in the genus Arachis (Fabaceae): a molecular phylogeny. Plant Syst Evol 290:185–199
    13. Gimenes MA, Lopes CR, Galgaro ML, Valls JFM, Kochert G (2002) RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica 123:421–429
    14. Gornung E, Colangelo P, Annesi F (2007) 5S ribosomal RNA genes in six species of Mediterranean grey mullets: genomic organization and phylogenetic inference. Genome 50:787–795
    15. Gregory WC, Gregory MP (1976) Groundnut. In: Simmonds NW (ed) Evolution of crop plants. Longman Group Ltd, London, pp 151–154
    16. Grieshammer U (1989) Isozymes in peanuts: variability among U.S. cultivars and Mendelian and non-Mendelian inheritance. MS thesis, North Carolina State University, Raleigh, NC
    17. Hamilton MB (1999) Four primer pairs for the amplification of chloroplast regions with intraspecific variation. Mol Ecol 8:521–523
    18. Hammons RO (1994) The origin and history of the groundnut. In: The groundnut crop: a scientific basis for improvement. Chapman and Hall, New York
    19. Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133:319–327
    20. Holbrook CC, Isleib TG (2001) Geographical distribution and genetic diversity in Arachis hypogaea. Peanut Sci 28:80–84
    21. Husted L (1936) Cytological studies on the peanut, Arachis. II. Chromosome number, morphology and behavior, and their application to the problem of the cultivated forms. Cytologia 7:396–423
    22. Kirti PB, Bharathi M, Murty UR, Rao NGP (1983) Chromosome morphology in three diploid species of Arachis and its bearing on the genomes of groundnut (Arachis hypogaea L.). Cytologia 48:139–151
    23. Kitamura S, Inoue M, Shikazono N, Tanaka A (2001) Relationships among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybridization. Theor Appl Genet 103:678–686
    24. Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570
    25. Kochert G, Stalker HT, Gimenes M, Galgaro L, Moore K (1996) RFLP and cytogenetic evidence for the progenitor species of allotetraploid cultivated peanut, Arachis hypogaea, (Leguminosae). Am J Bot 83:1282–1291
    26. Kotseruba V, Gernand D, Meister A, Houben A (2003) Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n = 8). Genome 46:156–163
    27. Krapovickas A (1973) Evolution of the genus Arachis. In: Moav R (ed) Agricultural genetics. Selected topics. National Council for Research and Development, Jerusalem, Israel, pp 135–151
    28. Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186
    29. Krapovickas A, Vanni RO (2010) The peanut from Llullaillaco. Bonplandia 18:51–55
    30. Lavia GI (1999) Caracterización cromosómica del germoplasma de maní. Ph.D. thesis, Universidad Nacional de Córdoba, Argentina
    31. Long ED, Dawid IB (1980) Repeated genes in eukaryotes. Ann Rev Biochem 49:727–764
    32. Lu J, Pickersgill B (1993) Isozyme variation and species relationships in peanut and its wild relatives (Arachis L.-Leguminosae). Theor Appl Genet 85:550–560
    33. Lumaret R, Bowman CM, Dyer TA (1989) Autopolyploidy in Dactylis glomerata L: further evidence from studies of chloroplast DNA variation. Theor Appl Genet 78:393–399
    34. Matyá?ek R, Fulnecek J, Lim KY, Leitch AR, Kovarík A (2002) Evolution of 5S rDNA unit arrays in the plant genus Nicotiana (Solanaceae). Genome 45:556–562
    35. McCarthy C (1996–1998) Chromas Version 1.45 (32-bits). [Internet]. Nathan, Queensland: School of Health Science, Griffith University. http://technelysium.com.au/chromas.html
    36. Milla SR, Isleib TG, Stalker HT (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48:1–11
    37. Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11
    38. Moretzsohn MC, Leoi L, Proite K, Guimaraes PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111:1060–1071
    39. Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am Nat 130:6–29
    40. Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763–772
    41. Rieseberg LH, Brunsfeld SJ (1992) Molecular evidence and plant introgression In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 151–176
    42. Robledo G, Seijo JG (2008) Characterization of Arachis D genome by FISH chromosome markers and total genome DNA hybridization. Genet Mol Biol 31:717–724
    43. Robledo G, Seijo JG (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1033–1046
    44. Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307
    45. Robledo G, Lavia GI, Seijo G (2010) Genome re-assignment of Arachis trinitensis (Sect. Arachis, Leguminosae) and its implications for the genetic origin of cultivated peanut. Genet Mol Biol 33:714–718
    46. R?ser M, Winterfeld G, Grebenstein B, Hemleben V (2001) Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). Mol Phylogenet Evol 21:198–217
    47. Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of 5S and 18S–25S rRNA genes evidences that Arachis duranensis and A. ipa?nsis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303
    48. Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea–Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971
    49. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166
    50. Simpson CE, Krapovickas A, Valls JFM (2001) History of Arachis included evidence of Arachis hypogaea progenitors. Peanut Sci 28:78–80
    51. Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Part 2. Chromosome complements of species of section Arachis. Theor Appl Genet 61:305–314
    52. Singh AK, Smartt J (1998) The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited. Genet Resour Crop Evol 45:113–118
    53. Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665–675
    54. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:409–1438
    55. Soltis DE, Soltis PS (1989) Isozymes in plant biology. Oregon Dioscorides Press, Portland
    56. Song K, Osborn T (1992) Polyphyletic origins of Brassica napus: new evidence based on organelle and nuclear RFLP analyses. Genome 35:992–1001
    57. Stalker HT, Moss JP (1987) Speciation, cytogenetics, and utilization of Arachis species. Adv Agron 41:1–40
    58. Subramanian V, Gurtu S, Nageswara Rao RC, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660
    59. Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111:1229–1237
    60. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599
    61. Vijaykumar A, Saini A, Jawali N (2011) Molecular characterization of intergenic spacer region of 5S ribosomal RNA genes in subgenus Vigna: extensive hybridization among V. unguiculata subspecies. Plant Syst Evol 294:39–55
    62. Wang CT, Wang XZ, Tang YY, Chen DX, Cui FG, Zhang JC, Yu SL (2010) Phylogeny of Arachis based on internal transcribed spacer sequences. Genet Resour Crop Evol 58:311–319
    63. Wendel JF, Schnabel A, Seelanan T (1995) An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phylogenet Evol 4:298–313
  • 作者单位:1. Instituto de Botánica del Nordeste, CC 209, 3400 Corrientes, Argentina2. Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Ecology
    Plant Anatomy and Development
    Plant Systematics/Taxonomy/ Biogeography
  • 出版者:Springer Wien
  • ISSN:1615-6110
文摘
The history of the cultivated peanut involves natural evolution and human domestication. Despite the economic importance of peanuts and the many studies carried out on their cytology and genetic variability, current knowledge on the origin of the cultigen is still very limited compared with other major crops. In this context, we analyzed the polymorphisms of some non-coding cpDNA regions and the non-transcribed spacer of the nuclear 5S rDNA of the six botanical varieties of the two subspecies of the cultigen, of the wild tetraploid A. monticola, and of the nine diploid species so far proposed as the most probable relatives of the peanut, to gain more insight into the genetic and geographic origin of this legume crop. The analysis showed complete homology in the sequences of all the peanut and A. monticola samples. These results strongly suggest that the six botanical varieties of the cultigen have a single genetic origin and that A. monticola should be regarded as the immediate tetraploid ancestor from which A. hypogaea has arisen upon domestication. Here we provide results from the first sequence-based analysis in which the maternal (A. duranensis) and paternal (A. ipa?nsis) wild diploid species of the AABB tetraploids of Arachis were unequivocally identified. Not only that, but the combination of cpDNA and NTS 5S rDNA identified the population of A. duranensis from Río Seco, Salta, Argentina, and the only known population of A. ipa?nsis from Villa Montes, Tarija, Bolivia, as those to which the genome donors of the peanut could have belonged.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700