Numerical simulation of airborne cloud seeding over Greece, using a convective cloud model
详细信息    查看全文
  • 作者:Vlado Spiridonov (1)
    Theodore Karacostas (2)
    Dimitrios Bampzelis (2)
    Ioannis Pytharoulis (2)

    1. Faculty of Natural Sciences and Mathematics
    ; Institute of Physics ; Ss. Cyril and Methodius University ; Skopje ; R. Macedonia
    2. Departments of Meteorology and Climatology
    ; Aristotle University of Thessaloniki ; Thessaloniki ; Greece Faculty of Natural
  • 关键词:Weather modification ; cloud modeling ; cloud seeding ; the Greek National Hail Suppression Program
  • 刊名:Asia-Pacific Journal of Atmospheric Sciences
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:51
  • 期:1
  • 页码:11-27
  • 全文大小:4,246 KB
  • 参考文献:1. Barth, M. C. (2007) Cloud-scale model intercomparison of chemical constituent transport in deep convection. Atmos. Chem. Phys. 7: pp. 4709-4731 CrossRef
    2. Bibalashvili, N. S., Burcev, I. I., Seregin, J. A. (1981) The manual of hail suppression orga-nization and practice.
    3. Browning, K. A. (1977) The structure and mechanisms of hailstorms. Hail: A Review of Hail Science and Hail Suppression. Amer. Meteor. Soc 38: pp. 1-43
    4. Byers, H. R., Braham, R. R. (1949) The Thunderstorm. U. S. Government Printing Office, Washington D. C.
    5. Cooper, W. A., Marwitz, J. (1980) Winter storms over the San Juan mountains. Part III: Seeding potential. J. Appl. Meteorol 19: pp. 942-949 CrossRef
    6. Cotton, W. R., Pielke, R. A. (2007) Human Impacts on Weather and Climate. CrossRef
    7. Dennis, A. S. (1980) Weather Modification by Cloud seeding. Acad. Press, New York
    8. Dixon, M., Wiener, G. (1993) TITAN: Thunderstorm Identification, Tracking, Analysis and Nowcasting 鈥?A radar-based methodology. J. Atmos. Ocean. Tech. 10: pp. 785-797 CrossRef
    9. Doswell, C. A. I. (2001) Severe Convective Storms- An Overview. Severe Convective Storms. Meteor. Monogr 28: pp. 1-26 CrossRef
    10. Durran, D. R. (1981) The effects of moisture on mountain lee waves.
    11. English, M. (1986) The testing of hail suppression hypotheses by the Alberta Hail Project. 10th Conf. Weather Modification. pp. 72-76
    12. English, M., Krauss, T.W. (1986) Results from an Alberta hailstorm seeding experiment. Presented 1st Intl. Cloud Modeling Workshop/Conf. 1985: pp. 79-84
    13. Foote, G. B. (1984) The study of hail growth utilizing observed storm conditions. J. Climate Appl. Meteor 23: pp. 84-101 CrossRef
    14. Georgopoulos, P. G., Seinfeld, J. H. (1986) Mathematical modeling of turbulent reacting plumes-General theory and model formulation. Atmos. Environ 20: pp. 1791-1802 CrossRef
    15. Houze, R. A., Biggerstaff, M., Rutledge, S., Smull, B. (1989) Interpretation of doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc 70: pp. 608-619 CrossRef
    16. Hsie, E.-Y., Farley, R. D., Orville, R. D. (1980) Numerical simulation of ice-phase convective cloud seeding. J. Appl. Meteorol 19: pp. 950-977 CrossRef
    17. Isaac, G. A., Strapp, J. W., Schemenaur, R. S. (1982) Summer Cumulus Cloud Seeding Experiments near Yellowknife and Thunder Bay, Canada. J. Appl. Meteorol. Clim 21: pp. 1266-1285 CrossRef
    18. Karacostas, T. S. (1984) The Design of the Greek NHSP. Proc. 9th Conf. on Wea. Mod.
    19. Karacostas, T. S. (1989) The Greek National Hail Suppression Program, Design and Conduct of the Experiment. Proc. 5th WMO Sci. Conf. on Wea. Mod. And Appl. Cloud Physics. pp. 605-608
    20. Klemp, J. B., Wilhelmson, R. B. (1978) The simulation of threedimensional convective storm dynamics. J. Atmos. Sci. 35: pp. 1070-1096 CrossRef
    21. Klemp, J. B., Durran, D. R. (1983) An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev. 11: pp. 430-444 CrossRef
    22. Kopp, F. J. (1988) A simulation of Alberta cumulus. J. Appl. Meteorol. 27: pp. 626-641 CrossRef
    23. Krauss, T. W. (1981) Precipitation Processes in the New Growth Zone of Alberta Hailstorms.
    24. Krauss, T. W. (1989) An assessment of seeding rate. Greek National Hail Suppression Program 1988 Annual Report, Edited by Rudolph et al.. INTERA Report M88-490, Calgary, 5.2 to 5.4.
    25. Krauss, T. W., Marwitz, J. D. (1984) Precipitation processes within an Alberta supercell hailstorm. J. Atmos. Sci 41: pp. 1025-1034 CrossRef
    26. Lemon, L. R., Doswell III, C. A. (1979) Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev. 107: pp. 1184-1197 CrossRef
    27. Levin, Z., Cotton, W. R. (2008) Aerosol Pollution Impact on Precipitation. A Scientific Review. pp. 386
    28. Lin, Y. L., Farley, R. D., Orville, H. D. (1983) Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor. 22: pp. 1065-1092 CrossRef
    29. List, R., Gabriel, K. R., Silverman, B. A., Levin, Z., Karacostas, T. (1998) The Rain Enhancement Experiment in Puglia, Italy: Statistical Evaluation. J. Appl. Meteorol 38: pp. 281-289 CrossRef
    30. Marwitz, J.D. (1972) The structure and motion of severe hailstorms. Part I: Supercell storms. J. Appl. Meteorol 11: pp. 166-179 CrossRef
    31. Marwitz, J.D. (1972) The structure and motion of severe hailstorms. Part II: Multi-cell storms. J. Appl. Meteorol 11: pp. 180-188 CrossRef
    32. Marwitz, J.D. (1972) The structure and motion of severe hailstorms. Part III: Severely sheared storms. J. Appl. Meteorol 11: pp. 189-201 CrossRef
    33. Mason, B. J. (1980) A review of 3 long-term cloud-seeding experiments. Meteor. Mag. 109: pp. 335-344
    34. Orville, H. D., Kopp, F. J. (1977) Numerical simulation of the history of a hailstorm. J. Atmos. Sci. 34: pp. 1596-1618 CrossRef
    35. Rosenfeld, D., Woodley, W. L. (1989) Effects of cloud seeding in west Texas. J. Appl. Meteorol 28: pp. 1050-1080 CrossRef
    36. Rosenfeld, D., Woodley, W. L. (1993) Effects of cloud seeding in west Texas: Additional results and new insights. J. Appl. Meteorol 32: pp. 1848-1866 CrossRef
    37. Smith, P. L., Myers, G. G., Orville, H. D. (1975) Radar reflectivity calculations on numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteorol 14: pp. 1156-1165 CrossRef
    38. Sekhon, R. S., Srivastava, R. C. (1970) Snow size spectra and radar reflectivity. J. Atmos. Sci. 27: pp. 299-307 CrossRef
    39. Silverman, B. A. (1986) Static mode seeding of summer cumuli-a review, in Rainfall Enhancement-A Scientific Challenge. Meteor. Monogr 21: pp. 7-24 CrossRef
    40. Silverman, B. A. (2001) A critical assessment of glaciogenic seeding of convective clouds for rain enhancement. Bull. Amer. Meteor. Soc. 82: pp. 903-924 CrossRef
    41. Spiridonov, V., Curic, M. (2006) A three-dimensional modeling study of hailstorm seeding. J. Wea. Mod 38: pp. 31-37
    42. Telenta, B., Aleksic, N. (1988) A three-dimensional simulation of the 17 June 1978 HIPLEX case with observed ice multiplication. 2nd International Cloud Modelling Workshop 268: pp. 277-285
    43. Weisman, M. L., Klemp, J. (1984) Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, American Meteor. Society. pp. 331-348
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
  • 出版者:Korean Meteorological Society, co-published with Springer
  • ISSN:1976-7951
文摘
An extensive work has been done by the Department of Meteorology and Climatology at Aristotle University of Thessaloniki and others using a three-dimensional cloud resolving model to simulate AgI seeding by aircraft of three distinct hailstorm cases occurred over Greece in period 2007-2009. The seeding criterion for silver iodide glaciogenic seeding from air is based on the beneficial competition mechanism. According to thermodynamic analysis and classification proposed by Marwitz (1972a, b, and c) and based on their structural and evolutionary properties we classified them in three groups as singlecell, multicell and supercell hailstorms. The seeding optimization for each selected case is conducted by analysis of the thermodynamic characteristics of the meteorological environment as well as radar reflectivity fields observed by the state of the art Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) software applied in the Greek National Hail Suppression Program (GNHSP). Results of this comprehensive study have shown positive effects with respect to hailfall decrease after successful seeding as our primarily objective. All three cases have illustrated 15-20% decrease in accumulated hailfall at the ground Seeded clouds have exhibited earlier development of precipitation and slight dynamical enhancement of the updraft and rainfall increase of ~10- 12.5%. The results have emphasized a strong interaction between cloud dynamics and microphysics, especially the subgrid scale processes that have impact on agent transport and diffusion in a complex environment. Comparisons between modelled and observed radar reflectivity also show a relatively good agreement. Simulated cloud seeding follows the operational aircraft seeding for hail suppression. The ability of silver-iodide particles to act as ice nuclei has been used to perform airborne cloud seeding, under controlled conditions of temperature and humidity. The seeding effects depend upon applying the seeding methodology in proper seeding time, right placement and agent dose rate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700