A storm modeling system as an advanced tool in prediction of well organized slowly moving convective cloud system and early warning of severe weather risk
详细信息    查看全文
  • 作者:Vlado Spiridonov (1)
    Mladjen Curic (2)

    1. Faculty of Natural Sciences and Mathematics
    ; Institute of Physics ; Skopje ; Macedonia
    2. Institute of Meteorology
    ; University of Belgrade ; Belgrade ; Serbia
  • 关键词:WRF ; NMM ; convective cloud model ; heavy rainfall ; flash flooding ; early warning ; severe weather risk
  • 刊名:Asia-Pacific Journal of Atmospheric Sciences
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:51
  • 期:1
  • 页码:61-75
  • 全文大小:5,609 KB
  • 参考文献:1. Blamey, R. C., Reason, C. J. C. (2009) Numerical simulation of a mesoscale convective system over the east coast of South Africa. Tellus 61A: pp. 17-34 CrossRef
    2. Bresson, E., Ducrocq, V., Nuissier, O., Ricard, D., Saint-Aubin, C. (2012) Idealized numerical simulations of quasi-stationary convective systems over the Northwestern Mediterranean complex terrain. Quart. J. Roy. Meteor. Soc. 138: pp. 1751-1763 CrossRef
    3. Buzzi, A., Davolio, S., Malguzzi, P., Drofa, O., Mastrangelo, D. (2014) Heavy rainfall episodes over Liguria of autumn 2011: numerical forecasting experiments. Nat. Hazards Earth Syst. Sci. 14: pp. 1325-1340 CrossRef
    4. Chen, S. S., Houze, R. A., Mapes, B. E. (1996) Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci. 53: pp. 1380-1409 CrossRef
    5. Coniglio, M. C., Harold E, B., Weiss, S. J., Corfidi, S. F. (2007) Forecasting the Maintenance of Quasi-Linear Mesoscale Convective Systems. Wea. Forecasting 22: pp. 556-570 CrossRef
    6. Curic, M. (2000) Cloud dynamics.
    7. Curic, M., Janc, D. (1995) On the sensitivity of the continuous accretion rate equation used in bulk-water parameterization schemes. Atmos. Res. 39: pp. 313-332 CrossRef
    8. Curic, M., Janc, D. (1997) On the sensitivity of hail accretion rates in numerical modeling. Tellus 49: pp. 100-107 CrossRef
    9. Lima, E., Nascimento, E. L., Droegemeier, K. K. (2005) Dynamic Adjustment in a Numerically Simulated Mesoscale Convective System. Impact of the Velocity Field. J. Atmos. Sci. 63: pp. 2246-2268
    10. Doswell, C. A., Brooks, H. E., Maddox, R. A. (1996) Flash flood forecasting: An ingredients based methodology. Wea. Forecasting 11: pp. 560-581 CrossRef
    11. Dudhia, J. (2014) Review: A History of mesoscale model development. Asia-Pac. J. Atmos. Sci. 50: pp. 121-131 CrossRef
    12. Durran, D. R. (1981) The effects of moisture on mountain lee waves. Ph. D. Thesis, Mass chussets Institute of Technology, Boston, MA, USA (NTIS PB 82126621).
    13. Ferrier, B. S., Lin, Y., Black, T., Rogers, E., DiMego, G. (2002) Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. Preprints, 15th Conference on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc..
    14. Goyens, C., Lauwaet, D., Schr枚der, M., Demuzere, M., Lipzig, V., Nicole, P. M. (2012) Tracking mesoscale convective systems in the Sahel: relation between cloud parameters and precipitation. Int. J. Climatol 32: pp. 1921-1934 CrossRef
    15. Fritsch, J. M., Forbes, G. S. (2001) Mesoscale convective systems. Meteor. Monogr 28: pp. 323-358 CrossRef
    16. Houze, R. A. (1993) Cloud Dynamics.
    17. Houze, R. A., 2004: Mesoscale convective systems. / Rev. Geophys., 42, doi: 10.1029/2004RG000150 .
    18. Klemp, J. B., B.Wilhelmson, R. (1978) The simulation of threedimensional convective storm dynamics. J. Atmos. Sci. 35: pp. 1070-1096 CrossRef
    19. Klemp, J. B., Durran, D. R. (1983) An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev. 111: pp. 430-444 CrossRef
    20. Koch, S. E., Ferrier, B., Stolinga, M., Szoke, E., Weiss, S. J., Kain, J. S. (2005) The use of simulated radar reflectivity fields in the diagnosis of mesoscale phenomena from high resolution WRF model forecasts; Preprints, 11th Conference on Mesoscale Processes, Albuquerque.
    21. Janjic, Z. I. (2003) A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys. 82: pp. 271-285 CrossRef
    22. Janjic, Z. I. (2003) The NCEP WRF core and further development of its physical package. 5th international SRNWP workshop on nonhydrostatic modeling.
    23. Lin, Y. L., Farley, R. D., Orville, H. D. (1983) Bulk water parameterization in a cloud model. J. Climate Appl. Meteor. 22: pp. 1065-1092 CrossRef
    24. Mathon, V., Laurent, H., Lebel, T. (2002) Mesoscale convective system rainfall in the Sahel. J. Appl. Meteorol. 41: pp. 1081-1092 CrossRef
    25. Mrowiec, A. A., Rio, C., Fridlind, A. M., Ackerman, A. S., Genio, A. D. D., Pauluis, O. M., Varble, A. C., Fan, J. (2012) Analysis of cloudresolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions. J. Geophys. Res. 117: pp. D19201 CrossRef
    26. Nachamkin, J. E., Cotton, W. R. (1999) Interactions between a Developing Mesoscale Convective System and Its Environment. Part II: Numerical Simulation. Mon. Wea. Rev. 128: pp. 1225-1244 CrossRef
    27. Nakazawa, T. (1988) Tropical cloud clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan 66: pp. 823-839
    28. Orville, H. D., Kopp, F. J. (1977) Numerical simulation of the history of a hailstorm. J. Atmos. Sci. 34: pp. 1596-1618 CrossRef
    29. Parodi, A., Boni, G., Ferraris, L., Siccardi, F., Pagliara, P., Trovatore, E., Foufoula-Georgiou, E., Kranzlmueller, D. (2012) The 鈥減erfect storm鈥? from across the Atlantic to the hills of Genoa. EOS, Trans. Amer. Geophys. Union 93: pp. 225-226
    30. Parker, M. D., Johnson, R. H. (2004) Structures and dynamics of Quasi-2D mesoscale convec tive systems. J. Atmos. Sci. 61: pp. 545-567 CrossRef
    31. Pulvirenti, L., Chini, M., Marzano, S., Pierdicca, N., Mori, S., Guerriero, L., Boni, G., Candela, L. (2011) Detection of floods and heavy rain using Cosmo-SkyMed data: The event in Northwestern Italy of November 2011. Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 3026鈥?029. pp. 22-27
    32. Rebora, N. (2013) Extreme rainfall in the mediterranean: What can we learn from observations?. J. Hydrometeor 14: pp. 906-922 CrossRef
    33. Schenkman, A. D., Xue, M., Shapiro, A. (2012) Tornadogenesis in a simulated mesovortex within a mesoscale convective system. J. Atmos. Sci. 69: pp. 3372-3390 CrossRef
    34. Sekhon, R. S., Srivastava, R. C. (1970) Snow size spectra and radar reflectivity. J. Atmos. Sci. 27: pp. 299-307 CrossRef
    35. Silvestro, F., Gabellani, S., Giannoni, F., Parodi, A., Rebora, N., Rudari, R., Siccardi, F. (2012) A hydrological analysis of the 4 November 2011 event in Genoa. Nat. Hazards Earth Syst. Sci. 12: pp. 2743-2752 CrossRef
    36. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., Powers, J. G. (2005) A description of the Advanced Research WRF Version 2, NCAR Tech.NoteTN-468+STR.
    37. Smith, P. L., Myers, G. G., Orville, H. D. (1975) Radar reflectivity calculations on numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteorol 14: pp. 1156-1165 CrossRef
    38. Spiridonov, V., Curic, M. (2003) Application of a cloud model in simulation of atmospheric sulfate transport and redistribution. Part I: Model description. Idoj谩r谩s 107: pp. 85-114
    39. Spiridonov, V., Curic, M. (2006) A three-dimensional modeling studies of hailstorm seeding. J. Wea. Mod. 38: pp. 31-37
    40. Spiridonov, V., Dimitrovski, Z., Curic, M. (2010) A three-dimensional simulation of supercell convective storm. Adv. Meteor 2010: pp. 15
    41. Telenta, B., Aleksic, N. (1988) A three-dimensional simulation of the 17 June 1978 HIPLEX case with observed ice multiplication, 2nd International Cloud Modeling Workshop, Toulouse, 8-12 August 1988. WMO/TD 268: pp. 277-285
    42. Weverberg, K.V., Vogelmann, A. M., Lin, W., Luke, E. P., Cialella, A., Minnis, P., Khaiyer, M., Boer, E. R., Jensen, M. P. (2013) The Role of Cloud Microphysics Parameterization in the Simulation of Mesoscale Convective System Clouds and Precipitation in the Tropical Western Pacific. J. Atmos. Sci. 70: pp. 1104-1128 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
  • 出版者:Korean Meteorological Society, co-published with Springer
  • ISSN:1976-7951
文摘
Short-range prediction of precipitation is a critical input to flood prediction and hence the accuracy of flood warnings. Since most of the intensive processes come from convective clouds-the primary aim is to forecast these small-scale atmospheric processes. One characteristic pattern of organized group of convective clouds consist of a line of deep convection resulted in the repeated passage of heavy-rain-producing convective cells over NW part of Macedonia along the line. This slowly moving convective system produced extreme local rainfall and hailfall in urban Skopje city. A 3-d cloud model is used to simulate the main storm characteristic (e.g., structure, intensity, evolution) and the main physical processes responsible for initiation of heavy rainfall and hailfall. The model showed a good performance in producing significantly more realistic and spatially accurate forecasts of convective rainfall event than is possible with current operational system. The output results give a good initial input for developing appropriate tools such as flooding indices and potential risk mapping for interpreting and presenting the predictions so that they enhance operational flood prediction capabilities and warnings of severe weather risk of weather services. Convective scale model-even for a single case used has proved significant benefits in several aspects (initiation of convection, storm structure and evolution and precipitation). The storm-scale model (grid spacing-1 km) is capable of producing significantly more realistic and spatially accurate forecasts of convective rainfall events than is possible with current operational systems based on model with grid spacing 15 km.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700