Palladium-defect complexes in diamond and silicon carbide
详细信息    查看全文
  • 作者:A. A. Abiona (1)
    W. Kemp (1)
    H. Timmers (1)
    K. Bharuth-Ram (2)

    1. School of Physical
    ; Environmental and Mathematical Sciences ; University of New South Wales ; Canberra ; PO Box 7916 ; Canberra ; BC ; 2610 ; Australia
    2. Physics Department
    ; Durban University of Technology ; Durban ; 4000 ; South Africa
  • 关键词:Semiconductor defects ; Diamond ; Silicon carbide ; Perturbed angular correlation ; Density functional theory ; 71.15. ; m ; 61.72. ; y ; 71.55. ; i ; 76.80.+y
  • 刊名:Hyperfine Interactions
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:230
  • 期:1-3
  • 页码:115-122
  • 全文大小:627 KB
  • 参考文献:1. Schulz, M (1999) Nature (London) 399: pp. 729 CrossRef
    2. Waldner, J.-B.: Nanocomputers and swarm intelligence. London: ISTE. pp. 44鈥?5. ISBN 978-1-84821-009-7 (2008)
    3. Keyes, RW (2005) Rep. Prog. Phys. 68: pp. 2701 CrossRef
    4. Buniatyan, VV, Aroutiounian, VM (2007) J. Phys. D 40: pp. 6355 CrossRef
    5. Willander, M., et al.: J. Mat. Sci.: Mat. Elect. 17 (2006). 4 Y. Gurbuz, O. Esame, I. Tekin
    6. In: Takahashi, K., Yoshikawa, A., Sandhu, A. (eds.): Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices. Springer, Berlin (2007)
    7. Dutt, MVG (2007) Science 316: pp. 1312 CrossRef
    8. Khajetoorians, AA (2010) Nature (London) 467: pp. 1084 CrossRef
    9. Hudgins, JL (2003) IEEE Trans. Power Electr. 18: pp. 907 CrossRef
    10. Wort, CJH, Balmer, RS (2008) Mater. Today 11: pp. 22 CrossRef
    11. In: Ricardo, S.S. (ed.) : CVD Diamond for Electronic Devices and Sensors. Wiley (2009). L td. ISBN: 978-0-470-06532-7
    J Mater Sci.: Mater Electron 17: pp. 1
    12. Schneider, J, Maier, K (1993) Phys. B 185: pp. 199 CrossRef
    13. Kunzer, M, M眉ller, HD, Kaufmann, U (1993) Phys. Rev. B 48: pp. 10846 CrossRef
    14. Dalibor, T (1997) Phys. Rev. B 55: pp. 13618 CrossRef
    15. Meng, Z (2006) J. Disp. Techn. 2: pp. 265 CrossRef
    16. Phung, TH, Zhu, C (2010) J. Electrochem. Soc. 157: pp. H755-H758 CrossRef
    17. Park, J-H (2007) Appl. Phys. Lett. 91: pp. 143107鈥?43107-3
    18. Brett, DA (2005) Phys. Rev. B 72: pp. 193202 CrossRef
    Hyperfine Interact. 177: pp. 33-37 CrossRef
    19. Dogra, R (2006) Phys. B 376: pp. 245 CrossRef
    20. Timmers, H (2010) Hyperfine Interact. 197: pp. 159-165 CrossRef
    21. Abiona, AA, Kemp, W, Timmers, H (2013) Hyperfine Interact. 221: pp. 65-72 CrossRef
    22. Abiona, AA, Kemp, W, Timmers, H (2014) AIP Conf. Proc. 1583: pp. 105 CrossRef
    23. Bezakova, E.: Ph.D. thesis, Australian National University, Canberra (1998)
    24. Haas, H., Carbonari, A., Blaha, P.: Annual Report No. HMI-B 526, 24 (1994)
    25. Giannozzi, P (2009) J. Phys.: Condens. Matter. 21: pp. 395502
    26. Pickard, CJ, Mauri, F (2001) Phys. Rev. B 245101: pp. 63
    27. Perdew, JP, Wang, Y (1992) Phys. Rev. B 45: pp. 13244-13249 CrossRef
    28. Monkhorst, HJ, Pack, JD (1976) Phys. Rev. B 13: pp. 5188-5192 CrossRef
    29. Haas, P, Tran, F, Blaha, P (2009) Phys. Rev. B 79: pp. 085104 CrossRef
    30. Wichert, Th, Swanson, ML (1989) J. Appl. Phys. 66: pp. 7 CrossRef
    31. Shim, J, Lee, E-K (2005) Phys. Rev. B 71: pp. 035206 CrossRef
    32. Zywietz, A, Furthm眉ller, J, Bechstedt, F (1999) Phys. Rev. B 59: pp. 1516 CrossRef
    33. Chroneos, A, Grimes, RW, Tsamis, C (2007) J Mater Sci.: Mater Electron 18: pp. 763-768
    34. Chroneos, A (2011) Acta Phys. Polon. A 119: pp. 774
    35. Abiona, A.A., Kemp, W., Timmers, H.: arXiv preprint arXiv:1409.2705
    36. Ziegler, J.F., Biersack, J.P., Ziegler, M.D.: SRIM, the Stopping and Range of Ions in Matter, SRIM Company (2008), http://www.srim.org/
    37. Abiona, A.A., Kemp, W., Williams, E., Timmers, H.: Heavy Ion Accelerator Symposium on Fundamental and Applied Science 2012, Canberra, Australia, EPJ Web of Conference, vol. 35 (2012)
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Nuclear Physics, Heavy Ions and Hadrons
    Atoms, Molecules, Clusters and Plasmas
    Condensed Matter
    Surfaces and Interfaces and Thin Films
  • 出版者:Springer Netherlands
  • ISSN:1572-9540
文摘
Time Differential Perturbed Angular Correlations (TDPAC) studies, supported by Density Functional Theory (DFT) modelling, have shown that palladium atoms in silicon and germanium pair with vacancies. Building on these results, here we present DFT predictions and some tentative TDPAC results on palladium-defect complexes and site locations of palladium impurities in diamond and silicon carbide. For both diamond and silicon carbide, the DFT calculations predict that a split-vacancy V-PdBI-V complex is favoured, with the palladium atom on a bond-centred interstitial site having a nearest-neighbour semi-vacancy on either side. Consistent with experimental results, this configuration is also assigned to palladium complexes in silicon and germanium. For silicon carbide, the DFT modelling predicts furthermore that a palladium atom in replacing a carbon atom moves to a bond-centred interstitial site and pairs with a silicon vacancy to form a complex that is more stable than that of a palladium atom which replaces a silicon atom and then moves to a bond-centred interstitial site pairings with a carbon vacancy. These two competing alternatives differ by 8.94 eV. The favourable pairing with a silicon vacancy is also supported independently by TRIM Monte Carlo calculations, which predict that more silicon vacancies than carbon vacancies are created during heavy ion. implantation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700