The fractal nature of folds and the Walsh copolymers
详细信息    查看全文
  • 作者:Vladimir R. Rosenfeld
  • 关键词:Fractal ; Energy minimum ; Fold ; Nucleotide and amino ; acid distribution ; (Complementary) codonic palindrome ; Semigroup ; Idempotent ; Hadamard matrix ; (Discrete) Walsh function ; Walsh copolymer ; (Molecular) zipper
  • 刊名:Journal of Mathematical Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:54
  • 期:2
  • 页码:559-571
  • 全文大小:428 KB
  • 参考文献:1.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University, Ithaca, 1979)
    2.D.A. Klein, W.A. Seitz, J.E. Kilpatrick, Branched polymer models. J. Appl. Phys. 53(10), 6599–6603 (1982)CrossRef
    3.D.J. Klein, W.A. Seitz, Self-similar self-avoiding structures: models for polymers. PNAS 80(10), 3125–3128 (1983)CrossRef
    4.D.J. Klein, W.A. Seitz, Graphs, polymer models, excluded volume, and chemical reality, in Topology and Graph Theory in Chemistry, ed. by R.B. King (Elsevier, Amsterdam, 1983), pp. 430–445
    5.L. Bytautas, D.J. Klein, M. Randić, T. Pisanski, Foldedness in linear polymers: a difference between graphical and Euclidean distances. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 51, 39–61 (2000)
    6.Y. Almirantis, A. Provata, An evolutionary model for the origin of non-random long-range order and fractality in the genome. BioEssays 23, 647–656 (2001)CrossRef
    7.N.N. Oiwa, J.A. Glazier, The fractal structure of the mitochondrial genomes. Phys. A 311, 221–230 (2002)CrossRef
    8.M.A. Moret, J.G. Miranda, E. Noqueira Jr, M.C. Santana, G.F. Zebende, Self-similarity and protein chains. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(1 Pt 1), 012901 (2005)CrossRef
    9.C. Cattani, Fractals and hidden symmetries in DNA. Math. Probl. Eng. 2010, Article ID 507056, 1–31
    10.N. Todoroff, J. Kunze, H. Schreuder, K.-H. Baringhaus, G. Schneider, Fractal dimensions of macromolecular structures. Mol. Inf. 33, 588–596 (2014)CrossRef
    11.R. Hancock, Structures and functions in the crowded nucleus: new biophysical insights. Front. Phys. 2(53), 1–7 (2014). doi:10.​3389/​fphy.​2014.​00053
    12.R.P. Bywater, Protein folding: a problem with multiple solutions. J. Biomol. Struct. Dyn. 31(4), 351–362 (2013)CrossRef
    13.A. Ben-Naim, Levinthal’s question revisited, and answered. J. Biomol. Struct. Dyn. 31(4), 113–124 (2013)
    14.I.N. Berezovsky, V.M. Kirzhner, A.Z. Kirzhner, V.R. Rosenfeld, E.N. Trifonov, Closed loops: persistence of the protein chain returns. Protein Eng. 15(12), 955–957 (2002)CrossRef
    15.I.N. Berezovsky, A.Z. Kirzhner, V.R. Rosenfeld, E.N. Trifonov, Protein sequences yield a proteomic code. J. Biomol. Struct. Dynam. 21(3), 317–326 (2003)CrossRef
    16.N. Papandreou, I.N. Berezovsky, A. Lopes, E. Eliopoulos, J. Chomilier, Universal positions in globular proteins. From observation to simulation. Eur. J. Biochem. 271, 4762–4768 (2004)CrossRef
    17.V.R. Rosenfeld, Using semigroups in modeling of genomic sequences. MATCH Commun. Math. Comput. Chem. 56(2), 281–290 (2006)
    18.A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, 2nd edn. (American Mathematical Society, Providence, 1967)
    19.P.M. Higgins, Techniques of Semigroup Theory (Oxford University Press, Oxford, 1992)
    20.L.N. Shevrin, Semigroups, in General Algebra, vol. 2, ed. by L.A. Skornyakov (Nauka, Moscow, 1991), pp. 11–191. (in Russian)
    21.G. Lallement, Semigroups and Combinatorial Applications (Wiley, New York, 1979)
    22.T.S. Blyth, M.H. Almeida, Regular semigroups with skew pairs of idempotents. Semigroup Forum 65, 264–274 (2002)CrossRef
    23.V.R. Rosenfeld, Emulating the function of introns in pre-mRNA. MATCH Commun. Math. Comput. Chem. 57(1), 135–142 (2007)
    24.V.R. Rosenfeld, D.J. Klein, Implications of sense/antisense nucleic-acid codons on amino-acid counts. Stud. Univ. Babes-Bolyai Chem. 55(4), 167–176 (2010)
    25.V.R. Rosenfeld, Color symmetry, semigroups, fractals. Croat. Chem. Acta 86(4), 555–559 (2013)CrossRef
    26.V.R. Rosenfeld, D.J. Klein, Cyclic nucleotide sequences codonically invariant under frame shifting. Stud. Univ. Babes-Bolyai Chem. 55(4), 177–182 (2010)
    27.V.R. Rosenfeld, Studying the polypeptide sequence (\(\alpha \) -code) of Escherichia coli. J. Theor. Chem. (2013). Article ID 961378
    28.B.B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Co., New York, 1982)
    29.M.F. Barnsley, H. Rising, Fractals Everywhere (Academic Press Professional, Boston, 1993)
    30.J.-F. Gouyet, Physics and Fractal Structures (foreword by B. Mandelbrot), Masson (Springer, New York, 1996)
    31.K. Falconer, Techniques in Fractal Geometry (Wiley, New York, 1997)
    32.V.R. Rosenfeld, Equivalent genomic (proteomic) sequences and semigroups. J. Math. Chem. 53(6), 1488–1494 (2015)CrossRef
    33.V.R. Rosenfeld, Selfcomplementary, selfreverse cyclic nucleotide sequences codonically invariant under frame shifting. J. Math. Chem. 51(10), 2644–2653 (2013)CrossRef
    34.N.C. Seeman, H. Wang, X. Yang, F. Liu, C. Mao, W. Sun, L. Wenzler, Z. Shen, R. Sha, H. Yan, M.H. Wong, P. Sa-Ardyen, B. Liu, H. Qiu, X. Li, J. Qi, S.M. Du, Y. Zhang, J.E. Mueller, T.-J. Fu, Y. Wang, J. Chen, New motifs in DNA nanotechnology. Nanotechnology 9, 257–273 (1998)CrossRef
    35.N.C. Seeman, At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology. Chem. Biol. 10, 1151–1159 (2003)CrossRef
    36.S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W.M. Shih, Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009)CrossRef
    37.H. Dietz, S.M. Douglas, W.M. Shih, Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009)CrossRef
    38.Y. Ke, S.M. Douglas, M. Liu, J. Sharma, A. Cheng, A. Leung, Y. Liu, W.M. Shih, H. Yan, Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009)CrossRef
    39.H. Gradišar, R. Jerala, Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. J. Nanobiotechnol. 12(4), 1–9 (2014)
    40.L. Jaeger, E. Westhof, N.B. Leontis, TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res. 29(2), 455–463 (2001)CrossRef
    41.K.A. Afonin, M. Kireeva, W.W. Grabow, M. Kashlev, L. Jaeger, B.A. Shapiro, Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. Nano Lett. 12(10), 5192–5195 (2012)CrossRef
    42.Y. Shu, F. Haque, D. Shu, W. Li, Z. Zhu, M. Kotb, Y. Lyubchenko, P. Guo, Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 19, 767–777 (2013)CrossRef
    43.J.G. Heddle, Protein cages, rings and tubes: useful components of future nanodevices? Nanotechnol. Sci. Appl. 1, 67–78 (2008)
    44.J.L. Walsh, A closed set of normal orthogonal functions. Am. J. Math. 45, 5–24 (1923)CrossRef
    45.N.J. Fine, On the Walsh functions. Trans. Am. Math. Soc. 65, 372–414 (1949)CrossRef
    46.K.G. Beauchamp, Walsh Functions and Their Applications (Academic Press, London, 1975)
    47.S.G. Tzafestas, Walsh Functions in Signal and Systems Analysis and Design (Van Nostrand Reinhold, New York, 1985)
    48.J. Hadamard, Résolution d’une question relative aux déterminants. Bull. Sci. Math. 17, 240–246 (1893)
    49.A. Hedayat, W.D. Wallis, Hadamard matrices and their applications. Ann. Stat. 6(6), 1184–1238 (1978)CrossRef
    50.A.P. Bisson, F.J. Carver, D.S. Eggleston, R.C. Haltiwanger, C.A. Hunter, D.L. Livingstone, J.F. McCabe, C. Rotger, A.E. Rowan, Synthesis and recognition properties of aromatic amide oligomers: molecular zippers. J. Am. Chem. Soc. 122, 8856–8868 (2000)CrossRef
    51.D.G. Allis, J.T. Spencer, Nanostructural architectures from molecular building blocks, in Handbook of Nanoscience, Engineering, and Technology, Ch. 18, 2nd edn., ed. by W.A. Goddard Iii, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate (CRC Press LLC, Boca Raton, 2007)
    52.A. Banerji, Studying protein interior with fractal dimension, in Fractal Symmetry of Protein Interior, Ch. 2, (SpringerBriefs in Biochemistry and Molecular Biology, Springer, Basel, 2013) pp. 84. doi: 10.​1007/​978-3-0348-0651-0_​2
  • 作者单位:Vladimir R. Rosenfeld (1) (2)

    1. Mathematical Chemistry Group, Department of Marine Sciences, Texas A&M University at Galveston, Galveston, TX, 77553–1675, USA
    2. Department of Computer Science and Mathematics, Ariel University, 40700, Ariel, Israel
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Theoretical and Computational Chemistry
    Mathematical Applications in Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8897
文摘
We discuss the fractal nature of protein folds and some mathematical apparatus to describe them. In particular, the scaling symmetry of such selfsimilar objects is described using semigroup theory. As is also shown, purely mathematical considerations may open the way toward a possible rational design of a wide class of synthetic folds of diverse chemical nature (for potential nanotechnological applications). In this regard, a special role is given to the Walsh functions and associated with them molecular constructions called Walsh copolymers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700