Molecular and cellular events involved in the completion of blastocyst implantation
详细信息    查看全文
  • 作者:Hiromichi Matsumoto ; Emiko Fukui ; Midori Yoshizawa
  • 关键词:Blastocyst ; Implantation ; Selective proteolysis ; Steroid hormones ; Uterine receptivity
  • 刊名:Reproductive Medicine and Biology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:15
  • 期:2
  • 页码:53-58
  • 全文大小:615 KB
  • 参考文献:1.Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, et al. Molecular cues to implantation. Endocr Rev. 2004;25:341–73.CrossRef PubMed
    2.Matsumoto H, Sato E. Uterine angiogenesis during implantation and decidualization in mice. Reprod Med Biol. 2006;5:81–6.CrossRef
    3.Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7:185–99.CrossRef PubMed
    4.Matsumoto H, Fukui E, Yoshizawa M. Uterine angiogenesis during implantation in mice. J Mamm Ova Res. 2007;24:45–9.CrossRef
    5.Matsumoto H, Fukui E, Yoshizawa M. Differential interactions between embryo and uterus during implantation in laboratory animals. J Mamm Ova Res. 2009;26:111–5.CrossRef
    6.Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18:1754–67.CrossRef PubMed
    7.Egashira M, Hirota Y. Uterine receptivity and embryo–uterine interactions in embryo implantation: lessons from mice. Reprod Med Biol. 2013;12:127–32.CrossRef
    8.Matsumoto H, Fukui E, Yoshizawa M. Angiogenesis and hormonal regulation on uterine receptivity for blastocyst implantation. J Mamm Ova Res. (in press).
    9.Paria BC, Reese J, Das SK, Dey SK. Deciphering the cross-talk of implantation: advances and challenges. Science. 2002;296:2185–8.CrossRef PubMed
    10.Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114:744–54.CrossRef PubMed PubMedCentral
    11.McCormack JT, Greenwald GS. Evidence for a preimplantation rise in oestradiol-17 beta levels on day 4 of pregnancy in the mouse. J Reprod Fertil. 1974;41:297–301.CrossRef PubMed
    12.Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci USA. 1993;90:10159–62.CrossRef PubMed PubMedCentral
    13.Huet-Hudson YM, Andrews GK, Dey SK. Cell type-specific localization of c-myc protein in the mouse uterus: modulation by steroid hormones and analysis of the periimplantation period. Endocrinology. 1989;125:1683–90.CrossRef PubMed
    14.Ma WG, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci USA. 2003;100:2963–8.CrossRef PubMed PubMedCentral
    15.Matsumoto H, Ezoe K, Mitsui A, Fukui E, Ochi M, Yoshizawa M. Vitrified-warmed ovarian tissue autotransplantation into ovariectomized mice restores sufficient ovarian function to support full-term pregnancy. Reprod Med Biol. 2011;10:185–91.CrossRef
    16.Matsumoto H, Ezoe K, Mitsui A, Fukui E, Ochi M, Yoshizawa M. Extended uterine receptivity for blastocyst implantation and full-term fetal development in mice with vitrified–warmed ovarian tissue autotransplantation. Reprod Med Biol. 2012;11:123–8.CrossRef
    17.Yoshinaga K, Adams CE. Delayed implantation in the spayed, progesterone treated adult mouse. J Reprod Fertil. 1966;12:593–5.CrossRef PubMed
    18.Hamatani T, Daikoku T, Wang H, Matsumoto H, Carter MG, Ko MS, et al. Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc Natl Acad Sci USA. 2004;101:10326–31.CrossRef PubMed PubMedCentral
    19.Paria BC, Das SK, Andrews GK, Dey SK. Expression of the epidermal growth factor receptor gene is regulated in mouse blastocysts during delayed implantation. Proc Natl Acad Sci USA. 1993;90:55–9.CrossRef PubMed PubMedCentral
    20.Raab G, Kover K, Paria BC, Dey SK, Ezzell RM, Klagsbrun M. Mouse preimplantation blastocysts adhere to cells expressing the transmembrane form of heparin-binding EGF-like growth factor. Development. 1996;122:637–45.PubMed
    21.Paria BC, Lim H, Wang XN, Liehr J, Das SK, Dey SK. Coordination of differential effects of primary estrogen and catecholestrogen on two distinct targets mediates embryo implantation in the mouse. Endocrinology. 1998;139:5235–46.PubMed
    22.Paria BC, Das SK, Dey SK. The preimplantation mouse embryo is a target for cannabinoid ligand-receptor signaling. Proc Natl Acad Sci USA. 1995;92:9460–4.CrossRef PubMed PubMedCentral
    23.Wang H, Guo Y, Wang D, Kingsley PJ, Marnett LJ, Das SK, et al. Aberrant cannabinoid signaling impairs oviductal transport of embryos. Nat Med. 2004;10:1074–80.CrossRef PubMed
    24.Guo Y, Wang H, Okamoto Y, Ueda N, Kingsley PJ, Marnett LJ, et al. N-acylphosphatidylethanolamine-hydrolyzing phospholipase D is an important determinant of uterine anandamide levels during implantation. J Biol Chem. 2005;280:23429–32.CrossRef PubMed
    25.Paria BC, Song H, Wang X, Schmid PC, Krebsbach RJ, Schmid HH, et al. Dysregulated cannabinoid signaling disrupts uterine receptivity for embryo implantation. J Biol Chem. 2001;276:20523–8.CrossRef PubMed
    26.Wang H, Matsumoto H, Guo Y, Paria BC, Roberts RL, Dey SK. Differential G protein-coupled cannabinoid receptor signaling by anandamide directs blastocyst activation for implantation. Proc Natl Acad Sci USA. 2003;100:14914–9.CrossRef PubMed PubMedCentral
    27.Stachecki JJ, Armant DR. Transient release of calcium from inositol 1,4,5-trisphosphate-specific stores regulates mouse preimplantation development. Development. 1996;122:2485–96.PubMed
    28.Wang J, Mayernik L, Schultz JF, Armant DR. Acceleration of trophoblast differentiation by heparin-binding EGF-like growth factor is dependent on the stage-specific activation of calcium influx by ErbB receptors in developing mouse blastocysts. Development. 2000;127:33–44.PubMed
    29.Wang Y, Wang F, Sun T, Trostinskaia A, Wygle D, Puscheck E, et al. Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos. Dev Dyn. 2004;231:72–87.CrossRef PubMed
    30.Riley JK, Carayannopoulos MO, Wyman AH, Chi M, Ratajczak CK, Moley KH. The PI3 K/Akt pathway is present and functional in the preimplantation mouse embryo. Dev Biol. 2005;284:377–86.CrossRef PubMed
    31.Aplin JD. Adhesion molecules in implantation. Rev Reprod. 1997;2:84–93.CrossRef PubMed
    32.Aplin JD, Singh H. Bioinformatics and transcriptomics studies of early implantation. Ann N Y Acad Sci. 2008;1127:116–20.CrossRef PubMed
    33.Toyama-Sorimachi N, Sorimachi H, Tobita Y, Kitamura F, Yagita H, Suzuki K, et al. A novel ligand for CD44 is serglycin, a hematopoietic cell lineage-specific proteoglycan. Possible involvement in lymphoid cell adherence and activation. J Biol Chem. 1995;270:7437–44.CrossRef PubMed
    34.Yonemura S, Tsukita S, Tsukita S. Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins. J Cell Biol. 1999;145:1497–509.CrossRef PubMed PubMedCentral
    35.Matsumoto H, Daikoku T, Wang H, Sato E, Dey SK. Differential expression of ezrin/radixin/moesin (ERM) and ERM-associated adhesion molecules in the blastocyst and uterus suggests their functions during implantation. Biol Reprod. 2004;70:729–36.CrossRef PubMed
    36.Armant DR, Kaplan HA, Lennarz WJ. Fibronectin and laminin promote in vitro attachment and outgrowth of mouse blastocysts. Dev Biol. 1986;116:519–23.CrossRef PubMed
    37.Carson DD, Tang JP, Gay S. Collagens support embryo attachment and outgrowth in vitro: effects of the Arg-Gly-Asp sequence. Dev Biol. 1988;127:368–75.CrossRef PubMed
    38.Sutherland AE, Calarco PG, Damsky CH. Expression and function of cell surface extracellular matrix receptors in mouse blastocyst attachment and outgrowth. J Cell Biol. 1988;106:1331–48.CrossRef PubMed
    39.Yelian FD, Edgeworth NA, Dong LJ, Chung AE, Armant DR. Recombinant entactin promotes mouse primary trophoblast cell adhesion and migration through the Arg-Gly-Asp (RGD) recognition sequence. J Cell Biol. 1993;121:923–9.CrossRef PubMed
    40.Wordinger RJ, Brun-Zinkernagel AM, Jackson T. An ultrastructural study of in vitro interaction of guinea-pig and mouse blastocysts with extracellular matrices. J Reprod Fertil. 1991;93:585–97.CrossRef PubMed
    41.Li S, Edgar D, Fassler R, Wadsworth W, Yurchenco PD. The role of laminin in embryonic cell polarization and tissue organization. Dev Cell. 2003;4:613–24.CrossRef PubMed
    42.Bedzhov I, Zernicka-Goetz M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell. 2014;156:1032–44.CrossRef PubMed PubMedCentral
    43.Salamat M, Miosge N, Herken R. Development of Reichert’s membrane in the early mouse embryo. Anat Embryol (Berl). 1995;192:275–81.CrossRef
    44.Verheijen MH, Defize LH. Signals governing extraembryonic endoderm formation in the mouse: involvement of the type 1 parathyroid hormone-related peptide (PTHrP) receptor, p21Ras and cell adhesion molecules. Int J Dev Biol. 1999;43:711–21.PubMed
    45.Blankenship TN, Given RL. Loss of laminin and type IV collagen in uterine luminal epithelial basement membranes during blastocyst implantation in the mouse. Anat Rec. 1995;243:27–36.CrossRef PubMed
    46.Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002;14:608–16.CrossRef PubMed
    47.Mukai K, Mitani F, Nagasawa H, Suzuki R, Suzuki T, Suematsu M, et al. An inverse correlation between expression of a preprocathepsin B-related protein with cysteine-rich sequences and steroid 11beta -hydroxylase in adrenocortical cells. J Biol Chem. 2003;278:17084–92.CrossRef PubMed
    48.Li D, Mukai K, Suzuki T, Suzuki R, Yamashita S, Mitani F, et al. Adrenocortical zonation factor 1 is a novel matricellular protein promoting integrin-mediated adhesion of adrenocortical and vascular smooth muscle cells. FEBS J. 2007;274:2506–22.CrossRef PubMed
    49.Igarashi T, Tajiri Y, Sakurai M, Sato E, Li D, Mukai K, et al. Tubulointerstitial nephritis antigen-like 1 is expressed in extraembryonic tissues and interacts with laminin 1 in the Reichert membrane at postimplantation in the mouse. Biol Reprod. 2009;81:948–55.CrossRef PubMed
    50.Sakurai M, Sato Y, Mukai K, Suematsu M, Fukui E, Yoshizawa M, et al. Distribution of tubulointerstitial nephritis antigen-like 1 and structural matrix proteins in mouse embryos during preimplantation development in vivo and in vitro. Zygote. 2014;22:259–65.CrossRef PubMed
    51.Tajiri Y, Igarashi T, Li D, Mukai K, Suematsu M, Fukui E, et al. Tubulointerstitial nephritis antigen-like 1 is expressed in the uterus and binds with integrins in decidualized endometrium during postimplantation in mice. Biol Reprod. 2010;82:263–70.CrossRef PubMed
    52.Saito K, Furukawa E, Kobayashi M, Fukui E, Yoshizawa M, Matsumoto H. Degradation of estrogen receptor in activated blastocysts is associated with implantation in the delayed implantation mouse model. Mol Hum Reprod. 2014;20:384–91.CrossRef PubMed
  • 作者单位:Hiromichi Matsumoto (1) (2)
    Emiko Fukui (1) (2)
    Midori Yoshizawa (1) (2)

    1. Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
    2. Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
  • 刊物主题:Reproductive Medicine; Gynecology; Urology/Andrology;
  • 出版者:Springer Japan
  • ISSN:1447-0578
文摘
Blastocyst implantation is an interactive process between the embryo and the uterus. The synchronization of embryonic development with uterine differentiation to a receptive state is essential for a successful pregnancy. The period of uterine receptivity for implantation is limited. Although implantation involves the interaction of numerous signaling molecules, our understanding of the hierarchical mechanisms that coordinate with the embryo–uterine dialogue is not yet sufficient to prevent infertility caused by implantation failure. This review highlights our knowledge on uterine receptivity and hormonal regulation of blastocyst implantation in mice. We also discuss the adhesion molecules, cross-linker proteins, extracellular proteins, and matricellular proteins involved in blastocyst implantation. Furthermore, our recent study reveals that selective proteolysis in an activated blastocyst is associated with the completion of blastocyst implantation after embryo transfer. A better understanding of uterine and blastocyst biology during the peri-implantation period would facilitate further development of reproductive technology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700