Why the South Pacific Convergence Zone is diagonal
详细信息    查看全文
  • 作者:Karin van der Wiel ; Adrian J. Matthews ; Manoj M. Joshi…
  • 关键词:SPCZ ; SST ; IGCM4 ; Asymmetry ; Rossby waves ; Moisture transport
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:46
  • 期:5-6
  • 页码:1683-1698
  • 全文大小:5,535 KB
  • 参考文献:Bagnato S, Linsley BK, Howe SS, Wellington GM, Salinger J (2005) Coral oxygen isotope records of interdecadal climate variations in the South Pacific Convergence Zone region. Geochem Geophys Geosyst 6(Q06):001. doi:10.​1029/​2004GC000879
    Betts AK (1986) A new convective adjustment scheme. Part I: observational and theoretical basis. Q J R Meteorol Soc 112:677–691. doi:10.​1002/​qj.​49711247307
    Borlace S, Santoso A, Cai W, Collins M (2014) Extreme swings of the South Pacific Convergence Zone and the different types of El Niño events. Geophys Res Lett 41:4695–4703. doi:10.​1002/​2014GL060551
    Brierley CM, Fedorov AV (2010) Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution. Paleoceanography 25:PA2214. doi:10.​1029/​2009PA001809
    Brown JR, Power SB, Delage FP, Colman RA, Moise AF, Murphy BF (2011) Evaluation of the South Pacific Convergence Zone in IPCC AR4 climate model simulations of the twentieth century. J Clim 24:1565–1582. doi:10.​1175/​2010JCLI3942.​1 CrossRef
    Brown JR, Moise AF, Delage FP (2012) Changes in the South Pacific Convergence Zone in IPCC AR4 future climate projections. Clim Dyn 39:1–19. doi:10.​1007/​s00382-011-1192-0 CrossRef
    Brown JR, Moise AF, Colman RA (2013) The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate. Clim Dyn 41:2179–2197. doi:10.​1007/​s00382-012-1591-x CrossRef
    Cai W, Lengaigne M, Borlace S, Collins M, Cowan T, McPhaden MJ, Timmermann A, Power S, Brown J, Menkes C, Ngari A, Vincent EM, Widlansky MJ (2012) More extreme swings of the South Pacific Convergence Zone due to greenhouse warming. Nature 488:365–370. doi:10.​1038/​nature11358 CrossRef
    Folland CK, Renwick JA, Salinger MJ, Mullan AB (2002) Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys Res Lett 29:1643. doi:10.​1029/​2001GL014201 CrossRef
    Forster PMdF, Blackburn M, Glover R, Shine KP (2000) An examination of climate sensitivity for idealised climate change experiments in an intermediate general circulation model. Clim Dyn 16:833–849. doi:10.​1007/​s003820000083 CrossRef
    Haffke C, Magnusdottir G (2013) The South Pacific Convergence Zone in three decades of satellite images. J Geophys Res 118:1–11. doi:10.​1002/​jgrd.​50838
    Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi:10.​1175/​JCLI3990.​1 CrossRef
    Joshi MM, Stringer M, Van der Wiel K, O’Callaghan A, Fueglistaler S (2015) IGCM4: a fast, parallel and flexible intermediate climate model. Geosci Model Dev 8:1157–1167. doi:10.​5194/​gmd-8-1157-2015 CrossRef
    Juillet-Leclerc A, Thiria S, Naveau P, Delcroix T, Le Bec N, Blamart D, Correge T (2006) SPCZ migration and ENSO events during the 20th century as revealed by climate proxies from a Fiji coral. Geophys Res Lett 33. doi:10.​1029/​2006GL025950
    Kiladis GN, von Storch H, van Loon H (1989) Origin of the South Pacific Convergence Zone. J Clim 2:1185–1195. doi:10.​1175/​1520-0442(1989)002<1185:​OOTSPC>2.​0.​CO;2 CrossRef
    Kitoh A (2002) Effects of large-scale mountains on surface climate: a coupled ocean–atmosphere general circulation model study. J Meteorol Soc Jpn 80:1165–1181. doi:10.​2151/​jmsj.​80.​1165 CrossRef
    Lintner BR, Neelin JD (2008) Eastern margin variability of the South Pacific Convergence Zone. Geophys Res Lett 35(L16):701. doi:10.​1029/​2008GL034298
    Matthews AJ (2012) A multiscale framework for the origin and variability of the South Pacific Convergence Zone. Q J R Meteorol Soc 138:1165–1178. doi:10.​1002/​qj.​1870 CrossRef
    McClymont EL, Rosell-Mele A (2005) Links between the onset of modern walker circulation and the mid-Pleistocene climate transition. Geology 33:389–392. doi:10.​1130/​G21292.​1 CrossRef
    Nieto Ferreira R, Chao WC (2013) Aqua-planet simulations of the formation of the South Atlantic convergence zone. Int J Climatol 33:615–628. doi:10.​1002/​joc.​3457 CrossRef
    Niznik MJ, Lintner BR (2013) Circulation, moisture and precipitation relationships along the South Pacific Convergence Zone in reanalyses and CMIP5 models. J Clim 26:10,174–10,192. doi:10.​1175/​JCLI-D-13-00263.​1 CrossRef
    Niznik MJ, Lintner BR, Matthews AJ, Widlansky MJ (2015) The role of tropical–extratropical interaction and synoptic variability in maintaining the South Pacific Convergence Zone in CMIP5 models. J Clim 28:3353–3374. doi:10.​1175/​JCLI-D-14-00527.​1 CrossRef
    Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625. doi:10.​1175/​1520-0442(2002)015<1609:​AIISAS>2.​0.​CO;2 CrossRef
    Riemann-Campe K, Fraedrich K, Lunkeit F (2009) Global climatology of convective available potential energy (CAPE) and convective inhibition (CIN) in ERA-40 reanalysis. Atmos Res 93:534–545. doi:10.​1016/​j.​atmosres.​2008.​09.​037 CrossRef
    Saint-Lu M, Braconnet P, Leloup J, Lengaigne M, Marti O (2015) Changes in the ENSO/SPCZ relationship from past to future climates. Earth Planet Sci Lett 412:18–24. doi:10.​1016/​j.​epsl.​2014.​12.​033 CrossRef
    Seager R, Murtugudde R (1997) Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J Clim 10:521–534. doi:10.​1175/​1520-0442(1997)010<0521:​ODTAAR>2.​0.​CO;2 CrossRef
    Slingo JM (1987) The development and verification of a cloud prediction scheme for the ECMWF model. Q J R Meteorol Soc 113:899–927. doi:10.​1002/​qj.​49711347710 CrossRef
    Streten NA (1973) Some characteristics of satellite-observed bands of persistent cloudiness over the Southern Hemisphere. Mon Weather Rev 101:486–495. doi:10.​1175/​1520-0493(1973)101<0486:​SCOSBO>2.​3.​CO;2 CrossRef
    Takahashi K, Battisti DS (2007a) Processes controlling the mean tropical Pacific precipitation pattern. Part I: the Andes and the Eastern Pacific ITCZ. J Clim 20:3434–3451. doi:10.​1175/​JCLI4198.​1 CrossRef
    Takahashi K, Battisti DS (2007b) Processes controlling the mean tropical Pacific precipitation pattern. Part II: the SPCZ and the southeast Pacific dry zone. J Clim 20:5696–5706. doi:10.​1175/​2007JCLI1656.​1 CrossRef
    Trenberth KE (1976) Spatial and temporal variations of the Southern Oscillation. Q J R Meteorol Soc 102:639–653. doi:10.​1002/​qj.​49710243310 CrossRef
    Van der Wiel K, Matthews AJ, Stevens DP, Joshi MM (2015) A dynamical framework for the origin of the diagonal South Pacific and South Atlantic Convergence Zones. Q J R Meteorol Soc. doi:10.​1002/​qj.​2508
    Vincent DG (1994) The South Pacific Convergence Zone (SPCZ): a review. Mon Weather Rev 122:1949–1970. doi:10.​1175/​1520-0493(1994)122<1949:​TSPCZA>2.​0.​CO;2 CrossRef
    Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2011) Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim Dyn 36:1881–1896. doi:10.​1007/​s00382-009-0716-3 CrossRef
    Widlansky MJ, Webster PJ, Hoyos CD (2011) On the location and orientation of the South Pacific Convergence Zone. Clim Dyn 36:561–578. doi:10.​1007/​s00382-010-0871-6 CrossRef
    Widlansky MJ, Timmermann A, Stein K, McGregor S, Schneider N, England MH, Lengaigne M, Cai W (2013) Changes in South Pacific rainfall bands in a warming climate. Nat Clim Change 3:417–423. doi:10.​1038/​nclimate1726 CrossRef
    Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. doi:10.​1175/​1520-0477(1997)078<2539:​GPAYMA>2.​0.​CO;2 CrossRef
    Zhong WY, Haigh JD (1995) Improved broad-band emissivity parameterization for water vapor cooling calculations. J Atmos Sci 52:124–138. doi:10.​1175/​1520-0469(1995)052<0124:​IBEPFW>2.​0.​CO;2 CrossRef
  • 作者单位:Karin van der Wiel (1) (2)
    Adrian J. Matthews (1) (2) (3)
    Manoj M. Joshi (1) (2) (4)
    David P. Stevens (1) (3)

    1. Centre for Ocean and Atmospheric Sciences, University of East Anglia, Norwich, UK
    2. School of Environmental Sciences, University of East Anglia, Norwich, UK
    3. School of Mathematics, University of East Anglia, Norwich, UK
    4. Climatic Research Unit, University of East Anglia, Norwich, UK
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
During austral summer, the majority of precipitation over the Pacific Ocean is concentrated in the South Pacific Convergence Zone (SPCZ). The surface boundary conditions required to support the diagonally (northwest–southeast) oriented SPCZ are determined through a series of experiments with an atmospheric general circulation model. Continental configuration and orography do not have a significant influence on SPCZ orientation and strength. The key necessary boundary condition is the zonally asymmetric component of the sea surface temperature (SST) distribution. This leads to a strong subtropical anticyclone over the southeast Pacific that, on its western flank, transports warm moist air from the equator into the SPCZ region. This moisture then intensifies (diagonal) bands of convection that are initiated by regions of ascent and reduced static stability ahead of the cyclonic vorticity in Rossby waves that are refracted toward the westerly duct over the equatorial Pacific. The climatological SPCZ is comprised of the superposition of these diagonal bands of convection. When the zonally asymmetric SST component is reduced or removed, the subtropical anticyclone and its associated moisture source is weakened. Despite the presence of Rossby waves, significant moist convection is no longer triggered; the SPCZ disappears. The diagonal SPCZ is robust to large changes (up to ±6 °C) in absolute SST (i.e. where the SST asymmetry is preserved). Extreme cooling (change <−6 °C) results in a weaker and more zonal SPCZ, due to decreasing atmospheric temperature, moisture content and convective available potential energy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700