CD57 in human natural killer cells and T-lymphocytes
详细信息    查看全文
  • 作者:Hassen Kared ; Serena Martelli ; Tze Pin Ng…
  • 关键词:CD57 ; KLRG1 ; NKG2C ; Memory NK cells ; Senescence ; NK maturation
  • 刊名:Cancer Immunology, Immunotherapy
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:65
  • 期:4
  • 页码:441-452
  • 全文大小:846 KB
  • 参考文献:1.Abo T, Balch CM (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 127(3):1024–1029PubMed
    2.Yamamoto S, Oka S, Inoue M, Shimuta M, Manabe T, Takahashi H, Miyamoto M, Asano M, Sakagami J, Sudo K, Iwakura Y, Ono K, Kawasaki T (2002) Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning. J Biol Chem 277(30):27227–27231CrossRef PubMed
    3.Focosi D, Bestagno M, Burrone O, Petrini M (2010) CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol 87(1):107–116CrossRef PubMed
    4.Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101(7):2711–2720CrossRef PubMed
    5.Palmer BE, Blyveis N, Fontenot AP, Wilson CC (2005) Functional and phenotypic characterization of CD57+ CD4+ T cells and their association with HIV-1-induced T cell dysfunction. J Immunol 175(12):8415–8423CrossRef PubMed
    6.Bandres E, Merino J, Vazquez B, Inoges S, Moreno C, Subira ML, Sanchez-Ibarrola A (2000) The increase of IFN-gamma production through aging correlates with the expanded CD8(+high) CD28(−) CD57(+) subpopulation. Clin Immunol 96(3):230–235CrossRef PubMed
    7.Strioga M, Pasukoniene V, Characiejus D (2011) CD8+ CD28− and CD8+ CD57+ T cells and their role in health and disease. Immunology 134(1):17–32CrossRef PubMed PubMedCentral
    8.Le Priol Y, Puthier D, Lecureuil C, Combadiere C, Debre P, Nguyen C, Combadiere B (2006) High cytotoxic and specific migratory potencies of senescent CD8+ CD57+ cells in HIV-infected and uninfected individuals. J Immunol 177(8):5145–5154CrossRef PubMed
    9.Petrovas C, Chaon B, Ambrozak DR, Price DA, Melenhorst JJ, Hill BJ, Geldmacher C, Casazza JP, Chattopadhyay PK, Roederer M, Douek DC, Mueller YM, Jacobson JM, Kulkarni V, Felber BK, Pavlakis GN, Katsikis PD, Koup RA (2009) Differential association of programmed death-1 and CD57 with ex vivo survival of CD8+ T cells in HIV infection. J Immunol 183(2):1120–1132CrossRef PubMed PubMedCentral
    10.Akbar AN, Henson SM (2011) Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 11(4):289–295CrossRef PubMed
    11.Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10(1):29–37CrossRef PubMed PubMedCentral
    12.Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R (2003) Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77(8):4911–4927CrossRef PubMed PubMedCentral
    13.Chattopadhyay PK, Betts MR, Price DA, Gostick E, Horton H, Roederer M, De Rosa SC (2009) The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J Leukoc Biol 85(1):88–97CrossRef PubMed PubMedCentral
    14.Chiang SC, Theorell J, Entesarian M, Meeths M, Mastafa M, Al-Herz W, Frisk P, Gilmour KC, Ifversen M, Langenskiold C, Machaczka M, Naqvi A, Payne J, Perez-Martinez A, Sabel M, Unal E, Unal S, Winiarski J, Nordenskjold M, Ljunggren HG, Henter JI, Bryceson YT (2013) Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood 121(8):1345–1356CrossRef PubMed
    15.Sadat-Sowti B, Parrot A, Quint L, Mayaud C, Debre P, Autran B (1994) Alveolar CD8+ CD57+ lymphocytes in human immunodeficiency virus infection produce an inhibitor of cytotoxic functions. Am J Respir Crit Care Med 149(4 Pt 1):972–980CrossRef PubMed
    16.De Rosa SC, Mitra DK, Watanabe N, Herzenberg LA, Herzenberg LA, Roederer M (2001) Vdelta1 and Vdelta2 gammadelta T cells express distinct surface markers and might be developmentally distinct lineages. J Leukoc Biol 70(4):518–526PubMed
    17.Vasudev A, Ying CT, Ayyadhury S, Puan KJ, Andiappan AK, Nyunt MS, Shadan NB, Mustafa S, Low I, Rotzschke O, Fulop T, Ng TP, Larbi A (2014) gamma/delta T cell subsets in human aging using the classical alpha/beta T cell model. J Leukoc Biol 96(4):647–655CrossRef PubMed
    18.Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, Puleston DJ, Watson AS, Simon AK, Tooze SA, Akbar AN (2014) p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J Clin Invest 124(9):4004–4016CrossRef PubMed PubMedCentral
    19.Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, Muller CA, Pircher H, Pawelec G (2003) Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol 38(8):911–920CrossRef PubMed
    20.Voehringer D, Koschella M, Pircher H (2002) Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood 100(10):3698–3702CrossRef PubMed
    21.Ibegbu CC, Xu YX, Harris W, Maggio D, Miller JD, Kourtis AP (2005) Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57. J Immunol 174(10):6088–6094CrossRef PubMed
    22.McMahon CW, Zajac AJ, Jamieson AM, Corral L, Hammer GE, Ahmed R, Raulet DH (2002) Viral and bacterial infections induce expression of multiple NK cell receptors in responding CD8(+) T cells. J Immunol 169(3):1444–1452CrossRef PubMed
    23.Voehringer D, Blaser C, Brawand P, Raulet DH, Hanke T, Pircher H (2001) Viral infections induce abundant numbers of senescent CD8 T cells. J Immunol 167(9):4838–4843CrossRef PubMed
    24.Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169CrossRef PubMed
    25.Ortiz-Suarez A, Miller RA (2002) A subset of CD8 memory T cells from old mice have high levels of CD28 and produce IFN-gamma. Clin Immunol 104(3):282–292CrossRef PubMed
    26.Kared H, Camous X, Larbi A (2014) T cells and their cytokines in persistent stimulation of the immune system. Curr Opin Immunol 29:79–85CrossRef PubMed
    27.Papagno L, Spina CA, Marchant A, Salio M, Rufer N, Little S, Dong T, Chesney G, Waters A, Easterbrook P, Dunbar PR, Shepherd D, Cerundolo V, Emery V, Griffiths P, Conlon C, McMichael AJ, Richman DD, Rowland-Jones SL, Appay V (2004) Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2(2):E20CrossRef PubMed PubMedCentral
    28.Scheinberg P, Melenhorst JJ, Brenchley JM, Hill BJ, Hensel NF, Chattopadhyay PK, Roederer M, Picker LJ, Price DA, Barrett AJ, Douek DC (2009) The transfer of adaptive immunity to CMV during hematopoietic stem cell transplantation is dependent on the specificity and phenotype of CMV-specific T cells in the donor. Blood 114(24):5071–5080CrossRef PubMed PubMedCentral
    29.Maurer T, Ponte M, Leslie K (2007) HIV-associated Kaposi’s sarcoma with a high CD4 count and a low viral load. N Engl J Med 357(13):1352–1353CrossRef PubMed
    30.Weekes MP, Wills MR, Mynard K, Hicks R, Sissons JGP, Carmichael AJ (1999) Large clonal expansions of human virus-specific memory cytotoxic T lymphocytes within the CD57(+) CD28(−) CD8(+) T-cell population. Immunology 98(3):443–449CrossRef PubMed PubMedCentral
    31.Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S, Nilsson BO, Ernerudh J, Pawelec G, Johansson B (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60(5):556–565CrossRef PubMed
    32.Franceschi C, Bonafe M, Valensin S (2000) Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine 18(16):1717–1720CrossRef PubMed
    33.Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C, Pulko V, Currier NL, Nikolich-Zugich D, Kaye J, Nikolich-Zugich J (2014) Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol 192(5):2143–2155CrossRef PubMed PubMedCentral
    34.Dolfi DV, Mansfield KD, Polley AM, Doyle SA, Freeman GJ, Pircher H, Schmader KE, Wherry EJ (2013) Increased T-bet is associated with senescence of influenza virus-specific CD8 T cells in aged humans. J Leukoc Biol 93(6):825–836CrossRef PubMed PubMedCentral
    35.Characiejus D, Pasukoniene V, Kazlauskaite N, Valuckas KP, Petraitis T, Mauricas M, Den Otter W (2002) Predictive value of CD8highCD57+ lymphocyte subset in interferon therapy of patients with renal cell carcinoma. Anticancer Res 22(6B):3679–3683PubMed
    36.Characiejus D, Ukoniene VP, Auskaite RJ, Azlauskaite N, Aleknavicius E, Mauricas M, Den Otter W (2008) Peripheral blood CD8highCD57+ lymphocyte levels may predict outcome in melanoma patients treated with adjuvant interferon-alpha. Anticancer Res 28(2B):1139–1142PubMed
    37.Akagi J, Baba H (2008) Prognostic value of CD57(+) T lymphocytes in the peripheral blood of patients with advanced gastric cancer. Int J Clin Oncol 13(6):528–535CrossRef PubMed
    38.Characiejus D, Pasukoniene V, Jacobs JJ, Eidukevicius R, Jankevicius F, Dobrovolskiene N, Mauricas M, Van Moorselaar RJ, Den Otter W (2011) Prognostic significance of peripheral blood CD8highCD57+ lymphocytes in bladder carcinoma patients after intravesical IL-2. Anticancer Res 31(2):699–703PubMed
    39.Filaci G, Fenoglio D, Fravega M, Ansaldo G, Borgonovo G, Traverso P, Villaggio B, Ferrera A, Kunkl A, Rizzi M, Ferrera F, Balestra P, Ghio M, Contini P, Setti M, Olive D, Azzarone B, Carmignani G, Ravetti JL, Torre G, Indiveri F (2007) CD8+ CD28− T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol 179(7):4323–4334CrossRef PubMed
    40.Gutkin DW, Shurin MR (2014) Clinical evaluation of systemic and local immune responses in cancer: time for integration. Cancer Immunol Immunother 63(1):45–57CrossRef PubMed PubMedCentral
    41.Tsukishiro T, Donnenberg AD, Whiteside TL (2003) Rapid turnover of the CD8(+) CD28(−) T-cell subset of effector cells in the circulation of patients with head and neck cancer. Cancer Immunol Immunother 52(10):599–607CrossRef PubMed
    42.Van den Hove LE, Vandenberghe P, Van Gool SW, Ceuppens JL, Demuynck H, Verhoef GE, Boogaerts MA (1998) Peripheral blood lymphocyte subset shifts in patients with untreated hematological tumors: evidence for systemic activation of the T cell compartment. Leuk Res 22(2):175–184CrossRef PubMed
    43.Atayar C, Poppema S, Visser L, van den Berg A (2006) Cytokine gene expression profile distinguishes CD4+/CD57+ T cells of the nodular lymphocyte predominance type of Hodgkin’s lymphoma from their tonsillar counterparts. J Pathol 208(3):423–430CrossRef PubMed
    44.Serrano D, Monteiro J, Allen SL, Kolitz J, Schulman P, Lichtman SM, Buchbinder A, Vinciguerra VP, Chiorazzi N, Gregersen PK (1997) Clonal expansion within the CD4+ CD57+ and CD8+ CD57+ T cell subsets in chronic lymphocytic leukemia. J Immunol 158(3):1482–1489PubMed
    45.Sze DM, Brown RD, Yuen E, Gibson J, Ho J, Raitakari M, Basten A, Joshua DE, de St Fazekas, Groth B (2003) Clonal cytotoxic T cells in myeloma. Leuk Lymphoma 44(10):1667–1674CrossRef PubMed
    46.Mileshkin L, Honemann D, Gambell P, Trivett M, Hayakawa Y, Smyth M, Beshay V, Ritchie D, Simmons P, Milner AD, Zeldis JB, Prince HM (2007) Patients with multiple myeloma treated with thalidomide: evaluation of clinical parameters, cytokines, angiogenic markers, mast cells and marrow CD57+ cytotoxic T cells as predictors of outcome. Haematologica 92(8):1075–1082CrossRef PubMed
    47.Nunes C, Wong R, Mason M, Fegan C, Man S, Pepper C (2012) Expansion of a CD8(+) PD-1(+) replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res 18(3):678–687CrossRef PubMed
    48.Dobrovolskiene NT, Cicenas S, Kazlauskaite N, Miseikyte-Kaubriene E, Krasko JA, Ostapenko V, Pasukoniene V, Strioga MM (2015) CD8CD57 T-cell population as an independent predictor of response to chemoradiation therapy in extensive-stage small cell lung cancer. Lung Cancer 90(2):326–333CrossRef PubMed
    49.Bottomley M, Harden P, Wood K (2015) CD57 expression in CD8 T cells and development of cutaneous squamous cell carcinoma in renal transplant recipients: a prospective cohort study. Lancet 385(Suppl 1):S23CrossRef PubMed
    50.Lin YX, Yan LN, Li B, Wang LL, Wen TF, Zeng Y, Wang WT, Zhao JC, Yang JY, Xu MQ, Ma YK, Chen ZY, Bai YJ (2009) A significant expansion of CD8+ CD28− T-suppressor cells in adult-to-adult living donor liver transplant recipients. Transplant Proc 41(10):4229–4231CrossRef PubMed
    51.Vlad G, Cortesini R, Suciu-Foca N (2008) CD8+ T suppressor cells and the ILT3 master switch. Hum Immunol 69(11):681–686CrossRef PubMed
    52.Sabnani I, Zucker MJ, Tsang P, Palekar S (2006) Clonal T-large granular lymphocyte proliferation in solid organ transplant recipients. Transplant Proc 38(10):3437–3440CrossRef PubMed
    53.Nielsen CM, White MJ, Goodier MR, Riley EM (2013) Functional Significance of CD57 Expression on human NK Cells and relevance to disease. Front Immunol 4:422CrossRef PubMed PubMedCentral
    54.Mikulkova Z, Praksova P, Stourac P, Bednarik J, Strajtova L, Pacasova R, Belobradkova J, Dite P, Michalek J (2010) Numerical defects in CD8+ CD28− T-suppressor lymphocyte population in patients with type 1 diabetes mellitus and multiple sclerosis. Cell Immunol 262(2):75–79CrossRef PubMed
    55.Tulunay A, Yavuz S, Direskeneli H, Eksioglu-Demiralp E (2008) CD8+ CD28−, suppressive T cells in systemic lupus erythematosus. Lupus 17(7):630–637CrossRef PubMed
    56.Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 116(19):3865–3874CrossRef PubMed PubMedCentral
    57.Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, Bjorklund AT, Flodstrom-Tullberg M, Michaelsson J, Rottenberg ME, Guzman CA, Ljunggren HG, Malmberg KJ (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116(19):3853–3864CrossRef PubMed
    58.Brunetta E, Hudspeth KL, Mavilio D (2010) Pathologic natural killer cell subset redistribution in HIV-1 infection: new insights in pathophysiology and clinical outcomes. J Leukoc Biol 88(6):1119–1130CrossRef PubMed
    59.Carrega P, Ferlazzo G (2012) Natural killer cell distribution and trafficking in human tissues. Front Immunol 3:347CrossRef PubMed PubMedCentral
    60.Strauss-Albee DM, Horowitz A, Parham P, Blish CA (2014) Coordinated regulation of NK receptor expression in the maturing human immune system. J Immunol 193(10):4871–4879CrossRef PubMed PubMedCentral
    61.Lugli E, Marcenaro E, Mavilio D (2014) NK Cell Subset Redistribution during the Course of Viral Infections. Front Immunol 5:390CrossRef PubMed PubMedCentral
    62.Mela CM, Goodier MR (2007) The contribution of cytomegalovirus to changes in NK cell receptor expression in HIV-1-infected individuals. J Infect Dis 195(1):158–159; author reply 159-160
    63.Guma M, Cabrera C, Erkizia I, Bofill M, Clotet B, Ruiz L, Lopez-Botet M (2006) Human cytomegalovirus infection is associated with increased proportions of NK cells that express the CD94/NKG2C receptor in aviremic HIV-1-positive patients. J Infect Dis 194(1):38–41CrossRef PubMed
    64.Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457(7229):557–561CrossRef PubMed PubMedCentral
    65.Prod’homme V, Griffin C, Aicheler RJ, Wang EC, McSharry BP, Rickards CR, Stanton RJ, Borysiewicz LK, Lopez-Botet M, Wilkinson GW, Tomasec P (2007) The human cytomegalovirus MHC class I homolog UL18 inhibits LIR-1+ but activates LIR-1− NK cells. J Immunol 178(7):4473–4481CrossRef PubMed PubMedCentral
    66.Goodier MR, White MJ, Darboe A, Nielsen CM, Goncalves A, Bottomley C, Moore SE, Riley EM (2014) Rapid NK cell differentiation in a population with near-universal human cytomegalovirus infection is attenuated by NKG2C deletions. Blood 124(14):2213–2222CrossRef PubMed PubMedCentral
    67.Hendricks DW, Balfour HH Jr, Dunmire SK, Schmeling DO, Hogquist KA, Lanier LL (2014) Cutting edge: NKG2C(hi)CD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein–Barr virus. J Immunol 192(10):4492–4496CrossRef PubMed PubMedCentral
    68.White MJ, Nielsen CM, McGregor RH, Riley EH, Goodier MR (2014) Differential activation of CD57-defined natural killer cell subsets during recall responses to vaccine antigens. Immunology 142(1):140–150CrossRef PubMed PubMedCentral
    69.Ahmad F, Hong HS, Jackel M, Jablonka A, Lu IN, Bhatnagar N, Eberhard JM, Bollmann BA, Ballmaier M, Zielinska-Skowronek M, Schmidt RE, Meyer-Olson D (2014) High frequencies of polyfunctional CD8+ NK cells in chronic HIV-1 infection are associated with slower disease progression. J Virol 88(21):12397–12408CrossRef PubMed PubMedCentral
    70.Brunetta E, Fogli M, Varchetta S, Bozzo L, Hudspeth KL, Marcenaro E, Moretta A, Mavilio D (2009) The decreased expression of Siglec-7 represents an early marker of dysfunctional natural killer-cell subsets associated with high levels of HIV-1 viremia. Blood 114(18):3822–3830CrossRef PubMed PubMedCentral
    71.Zhao JJ, Pan QZ, Pan K, Weng DS, Wang QJ, Li JJ, Lv L, Wang DD, Zheng HX, Jiang SS, Zhang XF, Xia JC (2014) Interleukin-37 mediates the antitumor activity in hepatocellular carcinoma: role for CD57+ NK cells. Sci Rep 4:5177PubMed PubMedCentral
    72.Lopez-Verges S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J, York VA, Houchins JP, Miller S, Kang SM, Norris PJ, Nixon DF, Lanier LL (2011) Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci USA 108(36):14725–14732CrossRef PubMed PubMedCentral
    73.Bhatnagar N, Ahmad F, Hong HS, Eberhard J, Lu IN, Ballmaier M, Schmidt RE, Jacobs R, Meyer-Olson D (2014) FcgammaRIII (CD16)-mediated ADCC by NK cells is regulated by monocytes and FcgammaRII (CD32). Eur J Immunol 44(11):3368–3379CrossRef PubMed
    74.Holmes TD, Wilson EB, Black EV, Benest AV, Vaz C, Tan B, Tanavde VM, Cook GP (2014) Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT. Proc Natl Acad Sci USA 111(52):E5688–E5696CrossRef PubMed PubMedCentral
    75.Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, Debre P, Merle-Beral H, Vieillard V (2010) Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 9(4):527–535CrossRef PubMed
    76.Borysiewicz LK, Rodgers B, Morris S, Graham S, Sissons JG (1985) Lysis of human cytomegalovirus infected fibroblasts by natural killer cells: demonstration of an interferon-independent component requiring expression of early viral proteins and characterization of effector cells. J Immunol 134(4):2695–2701PubMed
    77.Lima JF, Oliveira LM, Pereira NZ, Mitsunari GE, Duarte AJ, Sato MN (2014) Distinct natural killer cells in HIV-exposed seronegative subjects with effector cytotoxic CD56(dim) and CD56(bright) cells and memory-like CD57(+) NKG2C(+) CD56(dim) cells. J Acquir Immune Defic Syndr 67(5):463–471CrossRef PubMed
    78.Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L (2012) Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 12(4):239–252CrossRef PubMed
    79.Balch CM, Tilden AB, Dougherty PA, Cloud GA (1983) Depressed levels of granular lymphocytes with natural killer (NK) cell function in 247 cancer patients. Ann Surg 198(2):192–199CrossRef PubMed PubMedCentral
    80.Ali TH, Pisanti S, Ciaglia E, Mortarini R, Anichini A, Garofalo C, Tallerico R, Santinami M, Gulletta E, Ietto C, Galgani M, Matarese G, Bifulco M, Ferrone S, Colucci F, Moretta A, Karre K, Carbone E (2014) Enrichment of CD56(dim)KIR+ CD57+ highly cytotoxic NK cells in tumour-infiltrated lymph nodes of melanoma patients. Nat Commun 5:5639CrossRef PubMed PubMedCentral
    81.Matsumura G (1990) Leu7 (HNK-1)-positive cells in peripheral blood and natural killer cell activity in patients with atopic dermatitis. Nihon Hifuka Gakkai Zasshi 100(1):57–62PubMed
    82.Batista MD, Ho EL, Kuebler PJ, Milush JM, Lanier LL, Kallas EG, York VA, Chang D, Liao W, Unemori P, Leslie KS, Maurer T, Nixon DF (2013) Skewed distribution of natural killer cells in psoriasis skin lesions. Exp Dermatol 22(1):64–66CrossRef PubMed PubMedCentral
    83.Ottaviani C, Nasorri F, Bedini C, de Pita O, Girolomoni G, Cavani A (2006) CD56brightCD16(−) NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur J Immunol 36(1):118–128CrossRef PubMed
    84.Dalbeth N, Callan MF (2002) A subset of natural killer cells is greatly expanded within inflamed joints. Arthritis Rheum 46(7):1763–1772CrossRef PubMed
    85.Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, Dionisi S, Mosca F, Boggi U, Muda AO, Del Prato S, Elliott JF, Covacci A, Rappuoli R, Roep BO, Marchetti P (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 104(12):5115–5120CrossRef PubMed PubMedCentral
    86.van Helden MJ, Goossens S, Daussy C, Mathieu AL, Faure F, Marcais A, Vandamme N, Farla N, Mayol K, Viel S, Degouve S, Debien E, Seuntjens E, Conidi A, Chaix J, Mangeot P, de Bernard S, Buffat L, Haigh JJ, Huylebroeck D, Lambrecht BN, Berx G, Walzer T (2015) Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J Exp Med 212(12):2015–2025. doi:10.​1084/​jem.​20150809 CrossRef PubMed
    87.Omilusik KD, Best JA, Yu B, Goossens S, Weidemann A, Nguyen JV, Seuntjens E, Stryjewska A, Zweier C, Roychoudhuri R, Gattinoni L, Bird LM, Higashi Y, Kondoh H, Huylebroeck D, Haigh J, Goldrath AW (2015) Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. J Exp Med 212(12):2027–2039. doi:10.​1084/​jem.​20150194 CrossRef PubMed
    88.Lee SA, Sinclair E, Jain V, Huang Y, Epling L, Van Natta M, Meinert CL, Martin JN, McCune JM, Deeks SG, Lederman MM, Hecht FM, Hunt PW (2014) Low proportions of CD28− CD8+ T cells expressing CD57 can be reversed by early ART initiation and predict mortality in treated HIV infection. J Infect Dis 210(3):374–382CrossRef PubMed PubMedCentral
    89.Serrano-Villar S, Sainz T, Lee SA, Hunt PW, Sinclair E, Shacklett BL, Ferre AL, Hayes TL, Somsouk M, Hsue PY, Van Natta ML, Meinert CL, Lederman MM, Hatano H, Jain V, Huang Y, Hecht FM, Martin JN, McCune JM, Moreno S, Deeks SG (2014) HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog 10(5):e1004078CrossRef PubMed PubMedCentral
    90.Di Mitri D, Azevedo RI, Henson SM, Libri V, Riddell NE, Macaulay R, Kipling D, Soares MV, Battistini L, Akbar AN (2011) Reversible senescence in human CD4+ CD45RA+ CD27− memory T cells. J Immunol 187(5):2093–2100CrossRef PubMed
    91.Henson SM, Macaulay R, Riddell NE, Nunn CJ, Akbar AN (2015) Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8(+) T-cell proliferation by distinct pathways. Eur J Immunol 45(5):1441–1451CrossRef PubMed
    92.Libri V, Azevedo RI, Jackson SE, Di Mitri D, Lachmann R, Fuhrmann S, Vukmanovic-Stejic M, Yong K, Battistini L, Kern F, Soares MV, Akbar AN (2011) Cytomegalovirus infection induces the accumulation of short-lived, multifunctional CD4+ CD45RA+ CD27+ T cells: the potential involvement of interleukin-7 in this process. Immunology 132(3):326–339CrossRef PubMed PubMedCentral
    93.Lanna A, Coutavas E, Levati L, Seidel J, Rustin MH, Henson SM, Akbar AN, Franzese O (2013) IFN-alpha inhibits telomerase in human CD8(+) T cells by both hTERT downregulation and induction of p38 MAPK signaling. J Immunol 191(7):3744–3752CrossRef PubMed
  • 作者单位:Hassen Kared (1)
    Serena Martelli (1) (2)
    Tze Pin Ng (3)
    Sylvia L.F. Pender (2)
    Anis Larbi (1) (4) (5)

    1. Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove #3 Immunos, Singapore, 138648, Republic of Singapore
    2. Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
    3. Gerontological Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
    4. Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
    5. School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Cancer Research
    Immunology
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0851
文摘
The CD57 antigen (alternatively HNK-1, LEU-7, or L2) is routinely used to identify terminally differentiated ‘senescent’ cells with reduced proliferative capacity and altered functional properties. In this article, we review current understanding of the attributes of CD57-expressing T-cells and NK cells in both health and disease and discuss how this marker can inform researchers about their likely functions in human blood and tissues in vivo. While CD57 expression on human lymphocytes indicates an inability to proliferate, these cells also display high cytotoxic potential, and CD57pos NK cells exhibit both memory-like features and potent effector functions. Accordingly, frequencies of CD57-expressing cells in blood and tissues have been correlated with clinical prognosis in chronic infections or various cancers and with human aging. Functional modulation of senescent CD57pos T-cells and mature CD57pos NK cells may therefore represent innovative strategies for protection against human immunological aging and/or various chronic diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700