The interaction of celecoxib with MDR transporters enhances the activity of mitomycin C in a bladder cancer cell line
详细信息    查看全文
  • 作者:Vincenzo Pagliarulo (8)
    Patrizia Ancona (8)
    Mauro Niso (9)
    Nicola Antonio Colabufo (9)
    Marialessandra Contino (9)
    Luigi Cormio (10)
    Amalia Azzariti (11)
    Arcangelo Pagliarulo (8)
  • 关键词:Cyclooxygenase ; 2 ; Multidrug resistance ; Bladder cancer
  • 刊名:Molecular Cancer
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:12
  • 期:1
  • 全文大小:452KB
  • 参考文献:1. Sylvester RJ, van der Meijden APM, Oosterlinck W, Witjes JA, Bouffioux C, Donald LD, Newling WW: Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. / Eur Urol 2006, 49:466-77. CrossRef
    2. Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, B?hle A, Palou-Redorta J, Rouprêt M: European Association of Urology (EAU), EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. / Eur Urol 2011, 59:997-008. CrossRef
    3. Pawinski A, Sylvester R, Kurth KH, Bouffioux C, van der der Meijden A, Parmar MK, Bijnens L: A combined analysis of european organization for research and treatment of cancer, and medical research council randomized clinical trials for the prophylactic treatment of TaT1 bladder cancer. European organization for research and treatment of cancer genitourinary tract cancer cooperative group and the medical research council working part on superficial bladder cancer. / J Urol 1996, 156:1934-941. CrossRef
    4. Klan R, Loy V, Huland H: Residual tumor discovered in routine second transurethral resection in patients with stage T1 transitional cell carcinoma of the bladder. / J Urol 1991, 146:316-18.
    5. Divrik RT, Yildirim U, Zorlu F, Ozen H: The effect of repeat transurethral resection on recurrence and progression rates in patients with T1 tumors of the bladder who received intravesical mitomycin: a prospective, randomized clinical trial. / J Urol 2006, 175:1641-644. CrossRef
    6. Hayes MC, Birch BR, Cooper AJ, Primrose JN: Cellular resistance to mitomycin C is associated with overexpression of MDR-1 in a urothelial cancer cell line (MGH-U1). / Br J Urol 2001, 87:245-50. CrossRef
    7. Birare N, Lwaleed BA, Cooper AJ: Multidrug resistance in a urothelial cancer cell line after 1-hour mitomycin C exposure. / J Urol 2009, 182:2472-476. CrossRef
    8. Leslie EM, Deeley RG, Cole SPC: Multidrug resistance proteins: role of P-glycoprotein MRP1, MRP2, and BCRP (ABCG2) in tissue defense. / Toxicol Appl Pharmacol 2005, 204:216-37. CrossRef
    9. Borst P, Evers R, Kool M, Wijnholds J: A family of drug transporters: the multidrug resistance-associated proteins. / J Natl Cancer Inst 2000, 92:1295-302. CrossRef
    10. Tan B, Piwnica-Worms D, Ratner L: Multidrug resistance transporters and modulation. / Curr Opin Oncol 2000, 12:450-58. CrossRef
    11. Jedlitschky G, Leier I, Buchholz U, Barnouin K, Kurz G, Keppler D: Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. / Cancer Res 1996, 56:988-94.
    12. Nakagawa M, Emoto A, Nasu N, Hanada T, Kuwano M, Cole SP, Nomura Y: Clinical significance of multi-drug resistance associated protein and P-glycoprotein in patiens with bladder cancer. / J Urol 1996, 157:1260-265. CrossRef
    13. Diestra JE, Condom E, Del Muro XG, Scheffer GL, Pérez J, Zurita AJ, Mu?oz-Seguí J, Vigués F, Scheper RJ, Capellá G: Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: biological and clinical implications. / J Urol 2003, 170:1383-387. CrossRef
    14. Smithand WL, Dewitt DL: Prostaglandin endoperoxide H synthases-1 and ?. / Adv Immunol 1996, 62:167-15. CrossRef
    15. Mohammed SI, Dhawan D, Abraham S, Snyder PW, Waters DJ, Craig BA, Lu M, Wu L, Zheng R, Stewart J: Cyclooxygenase inhibitors in urinary bladder cancer: in vitro and in vivo effects. / Mol Cancer Ther 2006, 5:329-36. CrossRef
    16. Altorki NK, Keresztes RS, Port JL, Libby DM, Korst RJ, Flieder DB, Ferrara CA, Yankelevitz DF, Subbaramaiah K, Pasmantier MW: Celecoxib, a selective cyclooxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. / J Clin Oncol 2003, 21:2645-650. CrossRef
    17. Milella M, Gelibter A, Di Cosimo S, Bria E, Ruggeri EM, Carlini P, Malaguti P, Pellicciotta M, Terzoli E, Cognetti F: Pilot study of celecoxib and infusional 5-fluorouracil as second-line treatment for advanced pancreatic carcinoma. / Cancer 2004, 101:133-38. CrossRef
    18. Liu B, Qu L, Tao H: Cyclo-oxygenase 2 up-regulates the effect of multidrug resistance. / Cell Biol Int 2009, 34:21-5.
    19. Kang HK, Lee E, Pyo H, Lim SJ: Cyclooxygenase- independent down- regulation of multidrug resistance-associated protein- 1 expression by celecoxib in human lung cancer cells. / Mol Cancer Ther 2005, 4:1358-363. CrossRef
    20. Klein RD, Van Pelt CS, Sabichi AL, Dela Cerda J, Fischer SM, Fürstenberger G, Müller-Decker K: Transitional cell hyperplasia and carcinomas in urinary bladders of transgenic mice with keratin 5 promoter-driven cyclooxygenase-2 overexpression. / Cancer Res 2005, 65:1808-813. CrossRef
    21. Shariat SF, Kim JH, Ayala GE, Kho K, Wheeler TM, Lerner SP: Cyclooxygenase-2 is highly expressed in carcinoma in situ and T1 transitional cell carcinoma of the bladder. / J Urol 2003, 169:938-42. CrossRef
    22. Miyata Y, Kanda S, Nomata K, Eguchi J, Kanetake H: Expression of cyclooxygenase-2 and EP4 receptor in transitional cell carcinoma of the upper urinary tract. / J Urol 2005, 173:56-0. CrossRef
    23. Sun Y, Tang XM, Half E, Kuo MT, Sinicrope FA: Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. / Cancer Res 2002, 62:6323-328.
    24. Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, Serabjit-Singh CS: Rational use of in vitro P-glycoprotein assays in drug discovery. / J Pharmacol Exp Ther 2001, 299:620-28.
    25. Taub ME, Podila L, Almeida I: Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity. / Drug Metab Dispos 2005, 33:1679-687. CrossRef
    26. Kangas L, Gr?nroos M, Nieminem AL: Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro . / Med Biol 1984, 62:338-43.
    27. Korjamo T, Honkakoski P, Toppinen MR, Niva S, Reinisalo M, Palmgrén JJ, M?nkk?nen J: Absorption properties and P-glycoprotein activity of modified caco-2 cell lines. / Eur J Pharm Sci 2005, 26:266-79. CrossRef
    28. Eneroth A, Astr?m E, Hoogstraate J, Schrenk D, Conrad S, Kauffmann HM, Gjellan K: Evaluation of a vincristine resistant caco-2 cell line for use in a calcein AM extrusion screening assay for P-glycoprotein interaction. / Eur J Pharm Sci 2001, 12:205-14. CrossRef
    29. Feng B, Mills JB, Davidson RE, Mireles RJ, Janiszewski JS, Troutman MD, de Morais SM: In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. / Drug Metab Dispos 2008, 36:268-75. CrossRef
    30. Azzariti A, Colabufo NA, Berardi F, Snyder PW, Waters DJ, Craig BA, Lu M, Wu L, Zheng R, Stewart J: Cyclohexylpiperazine derivative PB28, a sigma-2 agonist and sigma-1 antagonist receptor, inhibits cell growth, modulates P-glycoprotein and synergizes with anthracyclines in breast cancer. / Mol Cancer Ther 2006, 5:1807-816. CrossRef
    31. Kalalinia F, Elahian F, Behravan J: Potential role of cyclooxygenase-2 on the regulation of the drug efflux transporter ABCG2 in breast cancer cell lines. / J Cancer Res Clin Oncol 2011, 137:321-30. CrossRef
    32. Fantappiè O, Masini E, Sardi I, Raimondi L, Bani D, Solazzo M, Vannacci A, Mazzanti R: The MDR phenotype is associated with the expression of COX-2 and iNOS in a human hepatocellularcarcinoma cell line. / Hepatology 2002, 35:843-52. CrossRef
    33. Patel VA, Dunn MJ, Sorokin A: Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. / J Biol Chem 2002, 277:38915-8920. CrossRef
    34. Sorokin A: Cyclooxygenase-2: potential role in regulation of drug efflux and multidrug resistance phenotype. / Curr Pharm Des 2004, 10:647-57. CrossRef
    35. Raspollini MR, Amunni G, Villanucci A, Boddi V, Taddei GL: Increased cyclooxygenase-2 (COX-2) and P-glycoprotein-170 (MDR1) expression is associated with chemotherapy resistance and poor prognosis. Analysis in ovarian carcinoma patients with low and high survival. / Int J Gynecol Cancer 2005, 15:255-60. CrossRef
    36. Ratnasinghe D, Daschner PJ, Anver MR, Kasprzak BH, Taylor PR, Yeh GC, Tangrea JA: Cyclooxygenase-2, P-glycoprotein-170 and drug resistance; is chemoprevention against multidrug resistance possible? / Anticancer Res 2001, 21:2141-147.
    37. Half E, Tang XM, Gwyn K, Sahin A, Wathen K, Sinicrope FA: Cyclooxygenase-2 expression in human breast cancers and adjacent ductal carcinoma in situ. / Cancer Res 2002, 62:1676-681.
    38. Liu B, Qu L, Tao H: Cyclo-oxygenase 2 up-regulates the effect of multidrug resistance. / Cell Biol Int 2009, 34:21-5.
    39. Shinohara N, Liebert M, Wedemeyer G, Chang JH, Grossman HB: Evaluation of multiple drug resistance in human bladder cancer cell lines. / J Urol 1993, 150:505-09.
    40. Hasegawa S, Abe T, Naito S, Kotoh S, Kumazawa J, Hipfner DR, Deeley RG, Cole SP, Kuwano M: Expression of multidrug resistance-associated protein (MRP), MDR1 and DNA topoisomerase II in human multidrug-resistant bladder cancer cell lines. / Br J Cancer 1995, 71:907-13. CrossRef
    41. Kimiya K, Naito S, Soejima T, Sakamoto N, Kotoh S, Kumazawa J, Tsuruo T: Establishment and characterization of doxorubicin-resistant human bladder cancer cell line, KK47/ADM. / J Urol 1992, 148:441-45.
    42. Nakagawa M, Emoto A, Nasu N, Hanada T, Kuwano M, Cole SP, Nomura Y: Clinical significance of multi-drug resistance associated protein and P- glycoprotein in patients with bladder cancer. / J Urol 1997, 157:1260-265. CrossRef
    43. Malmstr?m PU, Sylvester RJ, Crawford DE, Friedrich M, Krege S, Rintala E, Solsona E, Di Stasi SM, Witjes JA: An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus calmette-guérin for non-muscle-invasive bladder cancer. / Eur Urol 2009, 56:247-56. CrossRef
    44. Erlichman C, Boerner SA, Hallgren CG, Spieker R, Wang XY, James CD, Scheffer GL, Maliepaard M, Ross DD, Bible KC, Kaufmann SH: The HER tyrosine kinase inhibitor CI1033 enhances cytotoxicity of 7-ethyl-10-hydroxycamptothecin and topotecan by inhibiting breast cancer resistance protein-mediated drug efflux. / Cancer Res 2001, 61:739-48.
    45. Zrieki A, Farinotti R, Buyse M: Cyclooxygenase inhibitors down regulate P-glycoprotein in human colorectal caco-2 cell line. / Pharm Res 2008, 25:1991-001. CrossRef
    46. van Wijngaarden J, van Beek E, van Rossum AC, van der Bent C: Celecoxib, enhances doxorubicin-induced cytotoxicity in MDA-MB231 cells by NF- kappaB -mediated increase of intracellular doxorubicin accumulation. / Eur J Cancer 2007, 43:433-42. CrossRef
    47. Ye CG, Wu WK, Yeung JH, Li HT, Li ZJ, Wong CC, Ren SX, Zhang L, Fung KP, Cho CH: Indomethacin and SC236 enhance the cytotoxicity of doxorubicin in human hepatocellular carcinoma cells via inhibiting P-glycoprotein and MRP1 expression. / Cancer Lett 2011, 304:90-6. CrossRef
    48. Grubbs CJ, Juliana MM, Eto I: Chemoprevention by indomethacin of N-butyl-N-(4-hydroxybutyl)-nitrosamineinduced urinary bladder tumors. / Anticancer Res 1993, 13:33-6.
    49. Rao KV, Detrisac CJ, Steele VE: Differential activity of aspirin, ketoprofen and sulindac as cancer chemopreventive agents in the mouse urinary bladder. / Carcinogenesis 1996, 17:1435-438. CrossRef
    50. Daugherty SE, Pfeiffer RM, Sigurdson AJ, Hayes RB, Leitzmann M, Schatzkin A, Hollenbeck AR, Silverman DT: Nonsteroidal antiinflammatory drugs and bladder cancer: a pooled analysis. / Am J Epidemiol 2011, 173:721-30. CrossRef
    51. Castelao JE, Yuan JM, Gago-Dominguez M, Yu MC, Ross RK: Non-steroidal anti-inflammatory drugs and bladder cancer prevention. / Br J Cancer 2000, 82:1364-369. CrossRef
    52. Sabichi AL, Lee JJ, Grossman HB, Liu S, Richmond E, Czerniak BA, De la Cerda J, Eagle C, Viner JL, Palmer JL, Lerner SP: A randomized controlled trial of celecoxib to prevent recurrence of nonmuscle-invasive bladder cancer. / Cancer Prev Res 2011, 4:1580-589. CrossRef
  • 作者单位:Vincenzo Pagliarulo (8)
    Patrizia Ancona (8)
    Mauro Niso (9)
    Nicola Antonio Colabufo (9)
    Marialessandra Contino (9)
    Luigi Cormio (10)
    Amalia Azzariti (11)
    Arcangelo Pagliarulo (8)

    8. Sezione di Urologia e Andrologia, Dipartimento dell’Emergenza e dei Trapianti di Organi (DETO), Università “Aldo Moro-di Bari, Piazza G. Cesare 11, Bari, 70124, Italy
    9. Dipartimento Farmacochimico, Università “Aldo Moro-di Bari, Via Orabona, 4, Bari, 70125, Italy
    10. Sezione di Urologia e Trapianti di Reni, Università di Foggia, Viale Pinto 1, Foggia, 71100, Italy
    11. Istituto Tumori “Giovanni Paolo II-IRCCS Ospedale Oncologico, Viale Orazio Flacco 65, Bari, 70124, Italy
  • ISSN:1476-4598
文摘
Background An in vitro model was developed to understand if celecoxib could synergize with Mitomycin C (MMC), commonly used for the prevention of non-muscle invasive bladder cancer recurrence, and eventually elucidate if the mechanism of interaction involves multi drug resistance (MDR) transporters. Methods UMUC-3, a non COX-2 expressing bladder cancer cell line, and UMUC-3-CX, a COX-2 overexpressing transfectant, as well as 5637, a COX-2 overexpressing cell line, and 5637si-CX, a non COX-2 expressing silenced 5637 cell line, were used in the present study. The expression of COX-2 and MDR pumps (P-gp, MDR-1 and BCRP) was explored through western blot. The anti-proliferative effect of celecoxib and MMC was studied with MTT test. Three biological permeability assays (Drug Transport Experiment, Substrate Transporter Inhibition, and ATP cell depletion) were combined to study the interaction between MDR transporters and celecoxib. Finally, the ability of celecoxib to restore MMC cell accumulation was investigated. Results The anti-proliferative effect of celecoxib and MMC were investigated alone and in co-administration, in UMUC-3, UMUC-3-CX, 5637 and 5637si-CX cells. When administered alone, the effect of MMC was 8-fold greater in UMUC-3. However, co-administration of 1 μM, 5 μM, and 10 μM celecoxib and MMC caused a 2,3-fold cytotoxicity increase in UMUC-3-CX cell only. MMC cytotoxicity was not affected by celecoxib co-administration either in 5637, or in 5637si-CX cells. As a result of all finding from the permeability experiments, celecoxib was classified as P-gp unambiguous substrate: celecoxib is transported by MDR pumps and interferes with the efflux of MMC. Importantly, among all transporters, BCRP was only overexpressed in UMUC-3-CX cells, but not in 5637 and 5637si-CX. Conclusions The UMUC-3-CX cell line resembles a more aggressive phenotype with a lower response to MMC compared to the wt counterpart. However, the administration of celecoxib in combination to MMC causes a significant and dose dependent gain of the anti-proliferative activity. This finding may be the result of a direct interaction between celecoxib and MDR transporters. Indeed, BCRP is overexpressed in UMUC-3-CX, but not in UMUC-3, 5637, and 5637si-CX, in which celecoxib is ineffective.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700