Oxidoperoxidomolybdenum(VI) complexes involving 4-formyl-3-methyl-1-phenyl-2-pyrazoline-5-one and some β-diketoenolates
详细信息    查看全文
  • 作者:R. C. Maurya ; P. K. Vishwakarma ; J. M. Mir…
  • 关键词:Oxidoperoxidomolybdenum(VI) ; DFT ; Thermogravimetry
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:124
  • 期:1
  • 页码:57-70
  • 全文大小:1,776 KB
  • 参考文献:1.Hille R, Hall J, Basu P. The mononuclear molybdenum enzymes. Chem Rev. 2014;114:3963–4038.CrossRef
    2.Mir JM, Maurya RC. Industrial and medicinal properties of dioxomolybdenum(VI) complexes. Germany: Lambert Academic Publishing; 2015. ISBN:978-3-659-77916-9.
    3.Haywood S, Dincer Z, Holding J, Parry NM. Metal (molybdenum, copper) accumulation and retention in brain, pituitary and other organs of ammonium tetrathiomolybdate-treated sheep. Br J Nutr. 1998;79:329–31.CrossRef
    4.Thompson KH, McNeill JH, Orvig C. Vanadium compounds as insulin mimics. Chem Rev. 1999;99:2561–72.CrossRef
    5.Waern JB, Harding MM. Bioorganometallic chemistry of molybdocene dichloride. J Organomet Chem. 2004;689:4655–68.CrossRef
    6.Bridgeman AJ, Cavigliasso G. Structure and bonding in [M6O19] n− isopolyanions. Inorg Chem. 2002;41:1761.CrossRef
    7.Yamase T, Fujita H, Fukushima K. Medical chemistry of polyoxometalates. Part1. Potent antitumor activity of polyoxomolybdates on animal transplantable tumors and human cancer xenograft. Inorg Chim Acta. 1988;151:15–8.CrossRef
    8.Rhule JT, Hill CL, Judd DA, Schinazi RF. Polyoxometalates in medicine. Chem Rev. 1998;98:327–58.CrossRef
    9.Litos C, Terzis A, Raptopoulou C, Rontoyianni A, Karaliota A. Polynuclearoxomolybdenum(VI) complexes of dihydroxybenzoic acids: synthesis, spectroscopic and structure characterization of a tetranuclearcatecholato-type coordinated 2,3-dihydroxybenzoate and a novel tridentate salicylato-type coordinated 2,5-dihydroxybenzoate trinuclear complex. Polyhedron. 2006;25:1337–47.CrossRef
    10.Clarke AJ, Miller MK, Field RD, Coughlin DR, Gibbs PJ, Clarke KD, Alexander DJ, Powers KA, Papin PA, Krauss G. Atomic and nanoscale chemical and structural changes in quenched and tempered 4340 steel. Acta Mater. 2014;77:17–27.CrossRef
    11.Li X, Prokopcakova P, Palm M. Microstructure and mechanical properties of Fe–Al–Ti–B alloys with additions of Mo and W. Mater Sci Eng A. 2014;611:234–41.CrossRef
    12.Soliman AA, El-Medani SM, Ali OAM. Thermal study of chromium and molybdenum complexes with some nitrogen and nitrogen–oxygen donors ligands. J Therm Anal Calorim. 2006;83:385–92.CrossRef
    13.Hizhnyi YA, Nedilko SG, Chornii VP, Slobodyanik, Zatovsky IV, Terebilenko KV. Electronic structures and origin of intrinsic luminescence in Bi-containing oxide crystals BiPO4, K3Bi5(PO4)6, K2Bi(PO4)(MoO4), K2Bi(PO4)(WO4) and K5Bi(MoO4)4. J All Comp. 2014;614:420–35.CrossRef
    14.Maurya RC, Mir JM. Medicinal, industrial & environmental relevance of metal nitrosyl complexes: a review. Int J Sci Eng Res. 2014;5:305–21.
    15.Fayed AM, Elsayed SA, El-Hendawy AM, Mostafa MR. Complexes of cis-dioxomolybdenum(VI) and oxovanadium(IV) with a tridentate ONS donor ligand: synthesis, spectroscopic properties, X-ray crystal structure and catalytic activity. Spectrochim Acta A. 2014;129:293–302.CrossRef
    16.Thaker BT, Barvalia RS. Bidentate coordinating behaviour of chalcone based ligands towards oxocations: vO(IV) and Mo(V). Spectrochim Acta A. 2013;112:101–9.CrossRef
    17.Burke AJ. Chiral. Oxoperoxomolybdenum(VI) complexes for enantioselective olefin epoxidation: some mechanistic and stereochemical reflections. Coord Chem Rev. 2008;252:170.CrossRef
    18.Schenck JR, Speilmen MAJ. The formation of maltol by the degradation of streptomycin. J Am Chem Soc. 1945;67:2276.CrossRef
    19.Maurya MR, Dhaka S, Avecilla F. Oxidative bromination of monoterpene (thymol) using dioxidomolybdenum(VI) complexes of hydrazones of 8-formyl-7-hydroxy-4-methylcoumarin. Polyhedron. 2015;96:79–87.CrossRef
    20.Maurya MR, Dhaka S, Avecilla F. Oxidation of secondary alcohols by conventional and microwave-assisted methods using molybdenum complexes of ONO donor ligands. New J Chem. 2015;39:2130–9.CrossRef
    21.Maurya MR, Saini N, Avecilla F. Liquid phase versus microwave assisted selective oxidation of volatile organic compounds involving dioxidomolybdenum(VI) and oxidoperoxidomolybdenum(VI) complexes as catalysts in the presence/absence of an N-based additive. Polyhedron. 2015;90:221–32.CrossRef
    22.Maurya MR, Rana L, Avecilla F. Catalytic oxidation of internal and terminal alkenes by oxidoperoxidomolybdenum(VI) and dioxidomolybdenum(VI) complexes. Inorg Chim Acta. 2015;429:138–47.CrossRef
    23.Soliman AA. Thermogravimetric and spectroscopic studies on cadmium complexes with two salicylidenethiophenol schiff bases. J Therm Anal Cal. 2001;63:221–31.CrossRef
    24.Chambre DR, Bodescu AM, Sirghie C. Thermal decomposition of the oxo-diperoxo-molibdenum(VI)-potassium oxalate. J Therm Anal Calorim. 2013;112:851–7.CrossRef
    25.Braziulis G, Janulevicius G, Stankeviciute R, Zalga A. Aqueous sol–gel synthesis and thermo analytical study of the alkaline earth molybdate precursors. J Therm Anal Calorim. 2014;118:613–21.CrossRef
    26.Gavazov K, Lekova V, Boyanov B, Dimitrov A. Some tetrazolium salts and their ion-association complexes with the Molybdenum(VI): 4-Nitrocatechol anionic chelate DTA and TGA study. J Therm Anal Calorim. 2009;96:249–54.CrossRef
    27.Grzywa M, Gajda BW, Lasocha W. Thermal decomposition study of selected isopolymolybdates. J Therm Anal Calorim. 2009;96:395–401.CrossRef
    28.Srivastava KK, Srivastava S, AlamMd T. Thermal studies on the thermodynamic and kinetic parameters of the charge transfer complex of picric acid and o- phenanthroline. Int J Pharm Biol Chem Sci. 2013;2:26–37.
    29.Jankovic B, Mentus S, Jankovic M. A kinetic study of the thermal decomposition process of potassium metabisulfite: estimation of distributed reactivity model. J PhysChem Sol. 2008;69:1923–33.CrossRef
    30.Kahrizsangi RE, Abbasi MH. Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferrous Met Soc China. 2008;18:217–21.CrossRef
    31.Liu NA, Fan WC. Critical consideration on the Freeman and Carroll method for evaluating global mass loss kinetics of polymer thermal degradation. ThermochimActa. 1999;338:85–94.CrossRef
    32.Doyle CD. Kinetic analysis of thermogravimetric data. J ApplPolym Sci. 1961;5:285–92.CrossRef
    33.Coats AW, Redfern JP. Thermogravimetric analysis. A review. Analyst. 1963;88:906–64.CrossRef
    34.Wendlandt WW. Thermal analysis. 3rd ed. New York: Wiley; 1986. p. 58.
    35.Munde AS, Shelke VA, Jadhav SM, Kirdant AS, Vaidya SR, Shankarwar SG, Chondhekar TK. Synthesis, characterization and antimicrobial activities of some transition metal complexes of biologically active asymmetrical tetradentate ligands. Adv Appl Sci Res. 2012;3:175–82.
    36.Maurya RC, Malik BA, Mir JM, Vishwakarma PK. Oxidovanadium (IV) complexes involving dehydroacetic acid and β-diketones of bioinorganic and medicinal relevance: their synthesis, characterization, thermal behavior and DFT aspects. J Mol Struct. 2015;1083:343–56.CrossRef
    37.Maurya RC, Malik BA, Mir JM, Sharma AK. Synthesis, characterization, thermal behavior, and DFT aspects of some oxovanadium(IV) complexes involving ONO-donor sugar Schiff bases. J Coord Chem. 2014;67:3084–106.CrossRef
    38.Bochkarev LN, Bariniva YP, Ilicheva AI, Ketkov SY, Baranov EV, Ilichev VA, Yakhvarov DG. Synthesis, crystal structures and luminescent properties of the copper(I) pyrazolonate complexes. Inorg Chim Acta. 2015;425:189–97.CrossRef
    39.Maurya RC, Pandey A, Chaurasia J, Martin H. Metal nitrosyl complexes of bioinorganic, catalytic and environ-mental relevance: a novel single-step synthesis of dinitrosylmolybdenum(0) complexes of {Mo(NO)2}6 electron configuration involving Schiff bases derived from 4-acyl-3-methyl-1-phenyl-2-pyrazolin-5-one and 4-aminoantipyrine, directly from molybdate(VI) and their characterization. J Mol Struct. 2006;798:89–101.CrossRef
    40.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr, JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi, R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Reg, N, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Rahavachari K, Foresman, JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Komaromi PP, Gomperts R, Martin RL, Fox D, Keith T, AlLaham MA, Peng CY, Nanayakkara A, ChallaCombe M, Gill P, Johnsom B, Chen W, Wong MW, Andres JL, Gonzalez, Head Gordon M, Replogle ES, Pople JA. Gaussian09, Revision A11.4, Gaussian, Inc., Pittsburgh, 2010.
    41.Bayari S, Saglan S, Ustundag HF. Experimental and theoretical studies of the vibrational spectrum of 5-hydroxytryptamine. THEOCHEM. 2005;726:226.CrossRef
    42.Maurya RC, Verma R, Singh T. Synthesis, magnetic and spectral studies of mixed-ligand complexes of nickel(II) involving some chelating 4-oximino-2-pyrazoline-5-one derivatives. Synth React Inorg Met-Org Nano Chem. 2003;33(2):309–25.CrossRef
    43.Maurya RC, Sahu S, Bohre P. Synthesis, characterization, antibacterial activity and 3D-Molecular modeling of some oxoperoxomolybdenum(VI) chelates in mixed (O, O) coordination environment involving 2-Hydroxy-1-naphthaldehyde and & #x03B2;- diketoenolates. Indian J Chem. 2008;47A:1333–42.
    44.Maurya RC, Mishra DD. Synthesis and physico-chemical studies of some novel cyanonitrosyl chelates of chromium(I) with some pyrazoline-5-one derivatives. Indian J Chem. 1990;29A:1230.
    45.Maurya RC, Dubey J, Shukla B. A single step and virtually single pot synthesis of some cyanonitrosyl {Mn(NO)2}7 complexes of a managanese(0) involving 2- or 3- pyrazoline-5- one derivatives and their characterization. Synth React Inorg Met-Org Nano Chem. 1998;28(7):1159–71.CrossRef
    46.Maurya RC, Mishra DD. Synthesis and characterization of some novel hexacoordinated mixed-ligand cyanonitrosyl {CrNO}5 complexes of chromium with some potentially mono- and bi-dentate-5-pyrazolone derivatives. Synth React Inorg Met-Org Nano Chem. 1989;19:533.CrossRef
    47.Maurya RC, Rajput S. Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: synthesis, characterization and 3D-molecular modeling and analysis of some oxovanadium(IV) complexes involving O, O-donor environment. J Mol Struct. 2004;687:35–44.CrossRef
    48.Maurya RC, Jayaswal MN, Verma R. The coordination chemistry of dioxouranium(VI): studies on some novel bi- and tri-nuclear dioxouranium(VI) complexes with pyrazolone based Schiff bases. Synth React Inorg Met-Org Nano Chem. 1998;28:1265.CrossRef
    49.Maurya MR. Development of the coordination chemistry of vanadium through bis(acetylacetonato)oxovanadium(IV): synthesis, reactivity and structural aspects. Coord Chem Rev. 2003;237:163–81.CrossRef
    50.Maurya RC, Mishra DD. Synthesis and structural investigation of novel mixed-ligand cyanonitrosyl {CrNO}5 chelates of monovalent chromium with bidentate 4-acyl-2-pyrazoline-5-ones. Synth React Inorg Met-Org Chem. 1991;21:845.CrossRef
    51.Nakamoto K. Infrared and Raman spectra of coordination compounds. 3rd ed. New York: Wiley; 1978. p. 249–51.
    52.Maurya RC, Mishra DD, Trivedi PK, Mukherjee S, Shukla P. Synthesis and physico-chemical studies of some novel penta-coordinated derivatives of Zinc(II)-bis(acetylacetone) and -bis(acetoacetanilide) chelates containing heterocyclic nitrogen donors. Synth React Inorg-Met Org Chem. 1991;21:1219.CrossRef
    53.Nakamoto K. Infrared and Raman spectra of coordination compounds. 3rd ed. New York: Wiley; 1978. p. 254.
    54.Maurya RC, Mishra DD, Pillai V. Studies on some novel mixed-ligand oxovanadium(IV) complexes involving acetylacetone and nitrogen or oxygen donor organic compounds. Synth React Inorg-Met Org Chem. 1995;25:1127–41.CrossRef
    55.Yasumatsu N, Adachi Y, Sakurai H. Antidiabetic copper(II)-picolinate: impact of the first transition metal in the metallopicolinate complexes. Bioorg Med Chem. 2007;15:4917–22.CrossRef
    56.Maurya RC, Mishra DD, Mukherjee S, Dubey J. Metal cyanonitrosyl complexes: synthesis, magnetic and spectral studies of some novel mixed-ligand cyanonitrosyl {CoNO}8 complexes of Co(I) with heterocyclic bases. Polyhedron. 1995;14:1351.CrossRef
    57.Patel RN, Gundla VLN, Patel DK. Synthesis, structure and properties of some copper(II) complexes containing an ONO donor Schiff base and substituted imidazole ligands. Polyhedron. 2008;27:1054–60.CrossRef
    58.Saheb V, Sheikhshoaie I, Stoeckli-Evans H. A novel tridentate Schiff base dioxomolybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV–visible, 1H NMR and 13C NMR spectra. Spectrochim Acta A. 2012;95:29–36.CrossRef
  • 作者单位:R. C. Maurya (1)
    P. K. Vishwakarma (1)
    J. M. Mir (1)
    D. K. Rajak (1)

    1. Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry & Pharmacy, R. D. University, Jabalpur, 482001, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Five new oxidoperoxidomolybdenum(VI) complexes of the general composition [MoO(O2)(fmphp)(L)], where fmphpH = 4-formyl-3-methyl-1-phenyl-2-pyrazoline-5-one and LH = acetylacetone, methyl acetoacetate, benzoylacetone, acetoacetanilide or o-acetotoluidide, have been synthesized by the interaction of [MoO(O2)]2+ (obtained in situ during the interaction of MoO3 and 30 % H2O2 on continuous stirring at 50 °C for 24 h) and the said ligands in aqueous-ethanol medium. The complexes were characterized by physicochemical analyses involving magnetic measurements, infrared, electronic, mass spectral and thermal studies. Besides applying experimental spectroscopic techniques, theoretical data calculated using density functional theory (DFT) by B3LYP/LANL2DZ have also been used for structural determination. In addition to an optimized geometry with no imaginary frequency, the computed spectral data have been found in an excellent agreement with the experimental results. Thermo-gravimetric (TG) curve was used to arrive at the insights of thermal stability of one of the synthesized complexes. From overall studies, suitable heptacoordinate pseudo-pentagonal bipyramidal geometry has been found for the title compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700