Seasonal availability and sensitivity of two field-collected mayflies for the development of a standardized toxicity test
详细信息    查看全文
  • 作者:Brandi S. Echols (1)
    R. J. Currie (2)
    D. S. Cherry (1)
    J. R. Voshell (3)
  • 关键词:Test feasibility ; Mayflies ; Toxicity testing ; Sensitivity ; Acclimation
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:185
  • 期:2
  • 页码:1341-1353
  • 全文大小:663KB
  • 参考文献:1. American Society for Testing and Materials (ASTM) (2006). Standard guide for conducting laboratory toxicity tests with freshwater mussels. E2455-06. In / Annual Book of ASTM Standards, Vol 11.06. Philadelphia, PA, pp 1393-444.
    2. Barbour, M. T., Gerritsen, J., Snyder, B. D., Stribling, J. B. (1999). / Rapid bioassessment protocols for use in streams and wadeable rivers. 2nd Edition. EPA 941-B-99-002.
    3. Beketov, M. A. (2004). Different sensitivity of mayflies (Insecta: Ephemeroptera) to ammonia, nitrite and nitrate: linkage between experimental and observational data. / Hydrobiologia, 528, 209-16. CrossRef
    4. Brinkman, S. F., & Johnston, W. D. (2008). Acute toxicity of aqueous copper, cadmium, and zinc to the mayfly / Rhithrogena hageni. / Archives of Environmental Contamination and Toxicology, 54, 466-72. CrossRef
    5. Brittain, J. E. (1976). Experimental studies on nymphal growth in / Leptophlebia vespertina (L.) (Ephemeroptera). / Freshwater Biology, 6, 445-49. CrossRef
    6. Cairns, J., Jr. (1986). The myth of the most sensitive species. / Bioscience, 36, 670-72. CrossRef
    7. Cherry, D. S., & Soucek, D. J. (2006). Site-specific impact assessment using in-situ Asian clam ( / Corbicula fluminea) testing compared to traditional measures, with a chronological review of Asian clam biomonitoring. In J. L. Farris & J. H. Van Hassel (Eds.), / Freshwater Bivalve Ecotoxicology (pp. 285-05). New York: CRC Press. CrossRef
    8. Cherry, D. S., Van Hassel, J. H., Farris, J. L., Soucek, D. J., & Neves, R. J. (2002). Site-specific derivation of the acute copper criteria for the Clinch River, Virginia. / Human and Ecological Risk Assessment, 8, 591-01.
    9. Clubb, R. W., Gaufin, A. R., & Lords, J. L. (1975). Acute cadmium toxicity studies upon nine species of aquatic insects. / Environmental Research, 9, 332-41. CrossRef
    10. Diamond, J. M., Mackler, D. G., Collins, M., & Gruber, D. (1990). Derivation of a freshwater silver criteria for the New River, Virginia, using representative species. / Environmental Toxicology and Chemistry, 9, 1425-434. CrossRef
    11. Diamond, J. M., Winchester, E. L., Mackler, D. G., Collins, M., & Gruber, D. (1992). Use of the mayfly / Steonema modestum (Heptageniidae) in subacute toxicity assessments. / Environmental Toxicology and Chemistry, 11, 415-25.
    12. Dobbs, M. G., Farris, J. L., Reash, R. J., Cherry, D. S., & Cairns, J. C., Jr. (1994). Evaluation of the residentspecies procedure for developing site-specific water quality criteria for copper in Blaine Creek, Kentucky. / Environmental Toxicology and Chemistry, 13, 963-71. CrossRef
    13. Dwyer, F. J., Mayer, F. L., Sappington, L. C., Buckler, D. R., Bridges, C. M., Greer, I. E., et al. (2005). Assessing contaminant sensitivity of endangered and threatened aquatic species: part I. Acute toxicity of five chemicals. / Archives of Environmental Contamination and Toxicology, 48, 143-54. CrossRef
    14. Echols, B. S., Currie, R. J., & Cherry, D. S. (2010). Preliminary results of laboratory toxicity tests with the mayfly, / Isonychiabicolor (Ephemeroptera: Isonychiidae) for development as a standard test organism for evaluating streams in the Appalachian coalfields of Virginia and West Virginia. / Environmental Monitoring and Assessment, 169, 487-00. CrossRef
    15. Giesy, J. P., Rosin, C. J., Graney, R. C., & Henry, M. G. (1990). Benthic macroinvertebrate bioassays with toxic sediment and pore water. / Environmental Toxicology and Chemistry, 9, 233-48. CrossRef
    16. Gulley, D. D. (1994). TOXSTAT?, version 3.4. University of Wyoming Department of Zoology and Physiology, Laramie, WY.
    17. Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. / Environmental Science and Technology, 11, 714-19. correction 12, 417 (1978). CrossRef
    18. Hassell, K. L., Kefford, B. J., & Nugegoda, D. (2006). Sub-lethal and chronic salinity tolerances of three freshwater insects: / Cloeon sp. and / Centroptilum sp. (Ephemeroptera: Baetidae) and / Chironomus sp. (Diptera: Chironomidae). / Journal of Experimental Biology, 209, 4024-032. CrossRef
    19. Henry, M. G., Chester, D. N., & Mauck, W. C. (1986). Role of artificial burrows in / Hexagenia toxicity tests: recommendations for protocol development. / Environmental Toxicology and Chemistry, 6, 553-59.
    20. Hilsenhoff, W. L. (1987). An improved biotic index of organic stream pollution. / The Great Lakes Entomologist, 20, 31-9.
    21. Hubbard, M. D. & Peters, W. L. (1978). Environmental requirements and pollution tolerance of Ephemeroptera. U. S. Environmental Protection Agency (EPA-60078-061), Cincinnati. vi--61?pp.
    22. Hynes, H. B. N. (1970). / The ecology of running waters (p. 555). Toronto: University of Toronto Press.
    23. Ide, F. P. (1935). The effect of temperature on the distribution of the mayfly fauna of a stream. / University of Toronto Studies. Biological Series, 39, 3-6.
    24. Kennedy, A. J., Cherry, D. S., & Currie, R. J. (2004). Evaluation of ecologically relevant bioassays for a lotic system impacted by a coal-mine effluent, using / Isonychia. / Environmental Monitoring and Assessment, 95, 37-5. CrossRef
    25. Kondratieff, B. C., & Voshell, J. R., Jr. (1980). Life history and ecology of / Stenonema modestum (Banks) (Ephemeroptera: Heptageniidae) in Virginia, U.S.A. / Aquatic Insects, 2, 177-89. CrossRef
    26. Kondratieff, B. C., & Voshell, J. R. (1984). The north and central species of / Isonychia (Ephemeroptera: Oligoneuriidae). / Transactions of the American Entomological Society, 110, 12-44.
    27. Kormonday, E. (1965). Uptake and loss of zinc-65 in the dragonfly / Plathemis lydia. / Limnology and Oceanography, 10, 427-33. CrossRef
    28. Lewis, P. A. (1974). Taxonomy and ecology of / Stenonema mayflies (Heptageniidae: Ephemeroptera). U.S. E.P.A. Environmental Monitoring Service Report, EPA-670/4-74-006.81?pp.
    29. Nehring, R. (1976). Aquatic insects as biological monitors of heavy metal pollution. / Bulletin of Environmental Toxicology and Chemistry, 15, 147-54. CrossRef
    30. O'Halloran, K., Cavanagh, J., & Harding, J. S. (2008). Response of a New Zealand mayfly ( / Deleatidium spp.) to acid mine drainage: implications for mine remediation. / Environmental Toxicology and Chemistry, 27, 1135-140. CrossRef
    31. Peters, G. T., Cherry, D. S., & Cairns, J. C., Jr. (1985). Responses of / Isonychia bicolor to alkaline pH: an evaluation of survival, oxygen consumption and chloride cell ultrastructure. / Canadian Journal of Fisheries and Aquatic Sciences, 42, 1088-095. CrossRef
    32. Pond, G. J., Passmore, M. E., Borsuk, F. A., Reynolds, L., & Rose, C. J. (2008). Downstream effects of mountaintop coal mining: comparing biological conditions using family-and genus-level macroinvertebrate bioassessment tools. / Journal of the North American Benthological Society, 24, 717-97. CrossRef
    33. Pontasch, K., Niederlehner, B., & Cairns, J., Jr. (1989). Comparisons of single-species, microcosm and field responses to a complex effluent. / Environmental Toxicology and Chemistry, 8, 521-32. CrossRef
    34. Rempel, R. S., & Carter, J. C. H. (1987). Temperature influences on adult size, development, and reproductive potential of aquatic Diptera. / Canadian Journal of Fisheries and Aquatic Sciences, 44, 1743-752. CrossRef
    35. Rowe, L., Berrill, M., Hollett, L., & Hall, R. J. (1989). The effects of short-term laboratory pH depressions on molting, mortality and major ion concentrations in the mayflies / Stenonema femoratum and / Leptophlebia cupida. / Hydrobiologia, 184, 89-7. CrossRef
    36. SAS Institute Inc. (2009). JMP, Version 8. SAS Institute Inc., Cary, NC, 1989-010.
    37. Sherberger, F. F., Benfield, E. F., Dickson, K. L., & Cairns, J. C., Jr. (1977). Effects of thermal shocks on drifting insects: a laboratory simulation. / Journal of the Fisheries Research Board of Canada, 34, 529-36. CrossRef
    38. Smock, L. (1983). Relationships between metal concentration and organism size in aquatic insects. / Freshwater Biology, 13, 313-21. CrossRef
    39. Standley, L. J., Sweeney, B. W., & Funk, D. H. (1994). Maternal transfer of chlordane and its metabolites to the eggs of a stream mayfly / Centroptilum triangulifer. / Environmental Science and Technology, 28, 2105-111. CrossRef
    40. Sweeney, B. W. (1978). The response of a mayfly to thermal variation. / Limnology and Oceanography, 23, 461-77. CrossRef
    41. Sweeney, B. W., & Vannote, R. L. (1986). Growth and production of a stream stonefly: influences of diet and temperature. / Ecology, 67, 1396-410. CrossRef
    42. Sweeney, B. W., Funk, D. H., & Standley, L. J. (1993). Use of the stream mayfly / Cloeon triangulifer as a bioassay organism: life history response and body burden following exposure to technical chlordane. / Environmental Toxicology and Chemistry, 12, 115-25.
    43. US EPA (US Environmental Protection Agency) (1993). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA/600/4-90/027?F. Office of Water, Washington, D.C.
    44. US EPA (US Environmental Protection Agency) (2002a). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 5th edition.EPA-821-R-02-012.
    45. US EPA (US Environmental Protection Agency) (2002b). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms.4th edition.EPA-821-R-02-013.
    46. US EPA (US Environmental Protection Agency) (2006). The evaluation of methods for creating defensible, repeatable, objective and accurate tolerance values for aquatic taxa. EPA 600/R-06/045. Office of Research and Development, Washington, D.C.
    47. Wallace, J. B., & O'Hop, J. (1979). Fine particle suspension-feeding capabilities of / Isonychia spp (Ephemeroptera: Siphlonuridae). / Annals of the Entomological Society of America, 72, 353-57.
  • 作者单位:Brandi S. Echols (1)
    R. J. Currie (2)
    D. S. Cherry (1)
    J. R. Voshell (3)

    1. Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
    2. The Dow Chemical Company, Toxicology, Environmental Research and Consulting, Midland, MI, USA
    3. Department of Entomology, Virginia Tech, Blacksburg, VA, USA
  • ISSN:1573-2959
文摘
Ecologically relevant toxicity tests may provide the best protection of sensitive aquatic fauna, but without established culturing or test methodology for such organisms, results may be unreliable and difficult to repeat. Further, field-collected organisms may not be feasible for routine testing purposes, as often required for permitted discharges. This study examined the feasibility of testing two field-collected mayflies, Isonychia bicolor and Maccaffertium spp., over a 1-year period. Seasonal comparisons of availability indicated I. bicolor and Maccaffertium spp. were most abundant during the winter months, resulting in 31 and 49?% of total organisms collected in 2009, while summer was the most difficult time to collect either species. Initial testing in January 2009 resulted in the highest no observable effect concentration (NOEC) values for survivorship (8?g NaCl for I. bicolor and 4 and 8?g NaCl/L for Maccaffertium spp.) when tested at 9°C. Subsequent tests conducted at 20-3°C resulted in 7-day NOEC values substantially lower (mean--.44 and 1.59?g NaCl/L). Geometric means of exuviae indicated a dose-dependent response for I. bicolor exposed to NaCl, while no dose-dependent response was observed for Maccaffertium spp. with average number of molts varying from 4.93 in the 0.5?g NaCl/L concentration to 3.80 for control organisms followed by 2.24 (1?g NaCl/L). Averages again increased to 3.09 in the 2?g NaCl/L concentration, but declined in the highest concentrations (4-0?g NaCl/L). Based on the results of this feasibility study, field-collected mayflies appear to be too unpredictable in test responses, and therefore, such tests would be unreliable as stand-alone indicators of effluent toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700