Genome-wide binding analysis of the transcriptional regulator TrmBL1 in Pyrococcus furiosus
详细信息    查看全文
  • 作者:Robert Reichelt ; Antonia Gindner ; Michael Thomm ; Winfried Hausner
  • 关键词:Archaea ; Transcription factor ; Transcription regulation ; TrmB ; TrmBL1 ; TGM ; ChIP ; seq
  • 刊名:BMC Genomics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:2,097 KB
  • 参考文献:1.Bell SD. Archaeal transcriptional regulation--variation on a bacterial theme? Trends Microbiol. 2005;13:262–5.PubMed CrossRef
    2.Grohmann D, Werner F. Recent advances in the understanding of archaeal transcription. Curr Opin Microbiol. 2011;14:328–34.PubMed CrossRef
    3.Garrett RA, Klenk H. Archaea: Evolution, physiology, and molecular biology. Malden, MA: Blackwell Pub; 2007.
    4.Bell SD, Jackson SP. Mechanism of autoregulation by an archaeal transcriptional repressor. J Biol Chem. 2000;275:31624–9.PubMed CrossRef
    5.Vierke G, Engelmann A, Hebbeln C, Thomm M. A novel archaeal transcriptional regulator of heat shock response. J Biol Chem. 2003;278:18–26.PubMed CrossRef
    6.Ouhammouch M, Geiduschek EP. An expanding family of archaeal transcriptional activators. Proc Natl Acad Sci U S A. 2005;102:15423–8.PubMed PubMedCentral CrossRef
    7.Ochs SM, Thumann S, Richau R, Weirauch MT, Lowe TM, Thomm M, et al. Activation of archaeal transcription mediated by recruitment of transcription factor B. J Biol Chem. 2012;287:18863–71.PubMed PubMedCentral CrossRef
    8.Wagner M, Wagner A, Ma X, Kort JC, Ghosh A, Rauch B, et al. Investigation of the malE promoter and MalR, a positive regulator of the maltose regulon, for an improved expression system in Sulfolobus acidocaldarius. Appl Environ Microbiol. 2014;80:1072–81.PubMed PubMedCentral CrossRef
    9.Lipscomb GL, Keese AM, Cowart DM, Schut GJ, Thomm M, Adams WW, et al. SurR: a transcriptional activator and repressor controlling hydrogen and elemental sulphur metabolism in Pyrococcus furiosus. Mol Microbiol. 2009;71:332–49.PubMed PubMedCentral CrossRef
    10.Lee S, Surma M, Hausner W, Thomm M, Boos W. The role of TrmB and TrmB-like transcriptional regulators for sugar transport and metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol. 2008;190:247–56.PubMed CrossRef
    11.Kanai T, Akerboom J, Takedomi S, van de Werken HJ, Blombach F, van der Oost J, et al. A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes. J Biol Chem. 2007;282:33659–70.PubMed CrossRef
    12.Perez-Rueda E, Janga SC. Identification and genomic analysis of transcription factors in archaeal genomes exemplifies their functional architecture and evolutionary origin. Mol Biol Evol. 2010;27:1449–59.PubMed PubMedCentral CrossRef
    13.Maruyama H, Shin M, Oda T, Matsumi R, Ohniwa RL, Itoh T, et al. Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis. Mol Biol Cell. 2011;22:386–98.PubMed PubMedCentral CrossRef
    14.Gindner A, Hausner W, Thomm M. The TrmB family: a versatile group of transcriptional regulators in Archaea. Extremophiles. 2014;18:925–36.PubMed PubMedCentral CrossRef
    15.Lee S, Surma M, Seitz S, Hausner W, Thomm M, Boos W. Characterization of the TrmB-like protein, PF0124, a TGM-recognizing global transcriptional regulator of the hyperthermophilic archaeon Pyrococcus furiosus. Mol Microbiol. 2007;65:305–18.PubMed CrossRef
    16.Bräsen C, Esser D, Rauch B, Siebers B. Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev. 2014;78:89–175.PubMed PubMedCentral CrossRef
    17.Lee S, Engelmann A, Horlacher R, Qu Q, Vierke G, Hebbeln C, et al. TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem. 2003;278:983–90.PubMed CrossRef
    18.Lee S, Moulakakis C, Koning SM, Hausner W, Thomm M, Boos W. TrmB, a sugar sensing regulator of ABC transporter genes in Pyrococcus furiosus exhibits dual promoter specificity and is controlled by different inducers. Mol Microbiol. 2005;57:1797–807.PubMed CrossRef
    19.Krug M, Lee S, Boos W, Diederichs K, Welte W. The three-dimensional structure of TrmB, a transcriptional regulator of dual function in the hyperthermophilic archaeon Pyrococcus furiosus in complex with sucrose. Protein Sci. 2013;22:800–8.PubMed PubMedCentral CrossRef
    20.Vande Werken HJ, Verhees CH, Akerboom J, de Vos WM, van der Oost J. Identification of a glycolytic regulon in the archaea Pyrococcus and Thermococcus. FEMS Microbiol Lett. 2006;260:69–76.CrossRef
    21.Bell SD, Cairns SS, Robson RL, Jackson SP. Transcriptional regulation of an archaeal operon in vivo and in vitro. Mol Cell. 1999;4:971–82.PubMed CrossRef
    22.Facciotti MT, Reiss DJ, Pan M, Kaur A, Vuthoori M, Bonneau R, et al. General transcription factor specified global gene regulation in archaea. Proc Natl Acad Sci U S A. 2007;104:4630–5.PubMed PubMedCentral CrossRef
    23.Schmid AK, Reiss DJ, Pan M, Koide T, Baliga NS. A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability. Mol Syst Biol. 2009;5:282.PubMed PubMedCentral CrossRef
    24.Wojtas MN, Mogni M, Millet O, Bell SD, Abrescia NG. Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA. Nucleic Acids Res. 2012;40:9941–52.PubMed PubMedCentral CrossRef
    25.Song N, Nguyen Duc T, van Oeffelen L, Muyldermans S, Peeters E, Charlier D. Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus. Nucleic Acids Res. 2013;41:2932–49.PubMed PubMedCentral CrossRef
    26.Nguyen-Duc T, van Oeffelen L, Song N, Hassanzadeh-Ghassabeh G, Muyldermans S, Charlier D, et al. The genome-wide binding profile of the Sulfolobus solfataricus transcription factor Ss-LrpB shows binding events beyond direct transcription regulation. BMC genomics. 2013;14:828.PubMed PubMedCentral CrossRef
    27.Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316:1497–502.PubMed CrossRef
    28.Kahramanoglou C, Seshasayee AS, Prieto AI, Ibberson D, Schmidt S, Zimmermann J, et al. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res. 2011;39:2073–91.PubMed PubMedCentral CrossRef
    29.Wilbanks EG, Larsen DJ, Neches RY, Yao AI, Wu C, Kjolby RA, et al. A workflow for genome-wide mapping of archaeal transcription factors with ChIP-seq. Nucleic Acids Res. 2012;40, e74.PubMed PubMedCentral CrossRef
    30.Liu W, Vierke G, Wenke A, Thomm M, Ladenstein R. Crystal structure of the archaeal heat shock regulator from Pyrococcus furiosus: a molecular chimera representing eukaryal and bacterial features. J Mol Biol. 2007;369:474–88.PubMed CrossRef
    31.Fiala G, Stetter K. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol. 1986;145:56–61.CrossRef
    32.Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics (Oxford, England). 2007;23:1289–91.CrossRef
    33.Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.PubMed CrossRef
    34.Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40, e115.PubMed PubMedCentral CrossRef
    35.Waege I, Schmid G, Thumann S, Thomm M, Hausner W. Shuttle vector-based transformation system for Pyrococcus furiosus. Appl Environ Microbiol. 2010;76:3308–13.PubMed PubMedCentral CrossRef
    36.Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29, e45.PubMed PubMedCentral CrossRef
    37.Lee S, Surma M, Seitz S, Hausner W, Thomm M, Boos W. Differential signal transduction via TrmB, a sugar sensing transcriptional repressor of Pyrococcus furiosus. Mol Microbiol. 2007;64:1499–505.PubMed CrossRef
    38.Aparicio O, Geisberg JV, Struhl K. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Cell Biol. 2004; Chapter 17:Unit 17.7.
    39.Blankenberg D, Kuster G von, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J. Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 2010, Chapter 19:Unit 19.10.1-21.
    40.Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.PubMed PubMedCentral CrossRef
    41.Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome biology. 2008;9:R137.PubMed PubMedCentral CrossRef
    42.Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant methods. 2007;3:11.PubMed PubMedCentral CrossRef
    43.Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.PubMed
    44.Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.PubMed PubMedCentral CrossRef
    45.McLeay RC, Bailey TL. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC bioinformatics. 2010;11:165.PubMed PubMedCentral CrossRef
    46.Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics (Oxford, England). 2011;27:1017–8.CrossRef
    47.Bailey TL, Machanick P. Inferring direct DNA binding from ChIP-seq. Nucleic Acids Res. 2012;40, e128.PubMed PubMedCentral CrossRef
    48.Yoon SH, Reiss DJ, Bare JC, Tenenbaum D, Pan M, Slagel J, et al. Parallel evolution of transcriptome architecture during genome reorganization. Genome Res. 2011;21:1892–904.PubMed PubMedCentral CrossRef
    49.Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols. 2009;4:44–57.CrossRef
    50.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.PubMed PubMedCentral CrossRef
    51.Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199–205.PubMed PubMedCentral CrossRef
    52.Hethke C, Geerling AC, Hausner W, de Vos Willem M, Thomm M. A Cell-Free Transcription System for the Hyperthermophilic Archaeon Pyrococcus Furiosus. Nucleic Acids Res. 1996;24:2369–76.PubMed PubMedCentral CrossRef
    53.Wilbanks EG, Facciotti MT. Evaluation of algorithm performance in ChIP-seq peak detection. PloS one. 2010;5, e11471.PubMed PubMedCentral CrossRef
    54.Schut GJ, Brehm SD, Datta S, Adams MW. Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol. 2003;185:3935–47.PubMed PubMedCentral CrossRef
    55.Lee H, Shockley KR, Schut GJ, Conners SB, Montero CI, Johnson MR, et al. Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 2006;188:2115–25.PubMed PubMedCentral CrossRef
    56.Koning SM, Konings WN, Driessen AJ. Biochemical evidence for the presence of two alpha-glucoside ABC-transport systems in the hyperthermophilic archaeon Pyrococcus furiosus. Archaea. 2002;1:19–25.PubMed PubMedCentral CrossRef
    57.Kletzin A, Adams MW. Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol. 1996;178:248–57.PubMed PubMedCentral
    58.White JR, Escobar-Paramo P, Mongodin EF, Nelson KE, DiRuggiero J. Extensive genome rearrangements and multiple horizontal gene transfers in a population of pyrococcus isolates from Vulcano Island, Italy. Appl Environ Microbiol. 2008;74:6447–51.PubMed PubMedCentral CrossRef
    59.Diruggiero J, Dunn D, Maeder DL, Holley-Shanks R, Chatard J, Horlacher R, et al. Evidence of recent lateral gene transfer among hyperthermophilic archaea. Mol Microbiol. 2000;38:684–93.PubMed CrossRef
    60.Escobar-Paramo P, Ghosh S, DiRuggiero J. Evidence for genetic drift in the diversification of a geographically isolated population of the hyperthermophilic archaeon Pyrococcus. Mol Biol Evol. 2005;22:2297–303.PubMed CrossRef
    61.Nohara K, Orita I, Nakamura S, Imanaka T, Fukui T. Genetic examination and mass balance analysis of pyruvate/amino acid oxidation pathways in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol. 2014;196:3831–9.PubMed PubMedCentral CrossRef
    62.Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT, Schmid AK, et al. Prevalence of transcription promoters within archaeal operons and coding sequences. Mol Syst Biol. 2009;5:285.PubMed PubMedCentral CrossRef
    63.Barthelmebs L, Lecomte B, Divies C, Cavin JF. Inducible metabolism of phenolic acids in Pediococcus pentosaceus is encoded by an autoregulated operon which involves a new class of negative transcriptional regulator.J Bacteriol. 2000;182:6724–31.PubMed PubMedCentral CrossRef
    64.Comfort DA, Chou C, Conners SB, VanFossen AL, Kelly RM. Functional-genomics-based identification and characterization of open reading frames encoding alpha-glucoside-processing enzymes in the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol. 2008;74:1281–3.PubMed PubMedCentral CrossRef
    65.Todor H, Sharma K, Pittman AM, Schmid AK. Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea. Nucleic Acids Res. 2013;41:8546–58.PubMed PubMedCentral CrossRef
    66.Todor H, Dulmage K, Gillum N, Bain JR, Muehlbauer MJ, Schmid AK. A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon Halobacterium salinarum. Mol Microbiol. 2014;93:1172–82.PubMed
    67.Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.PubMed PubMedCentral CrossRef
  • 作者单位:Robert Reichelt (1)
    Antonia Gindner (1)
    Michael Thomm (1)
    Winfried Hausner (1)

    1. Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Several in vitro studies document the function of the transcriptional regulator TrmBL1 of Pyrococcus furiosus. These data indicate that the protein can act as repressor or activator and is mainly involved in transcriptional control of sugar uptake and in the switch between glycolysis and gluconeogenesis. The aim of this study was to complement the in vitro data with an in vivo analysis using ChIP-seq to explore the genome-wide binding profile of TrmBL1 under glycolytic and gluconeogenic growth conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700