Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds
详细信息    查看全文
  • 作者:Peter C McKeown (1)
    Sylvia Laouielle-Duprat (1)
    Pjotr Prins (2)
    Philip Wolff (3) (4)
    Marc W Schmid (5)
    Mark TA Donoghue (1)
    Antoine Fort (1)
    Dorota Duszynska (1)
    Aurélie Comte (1)
    Nga Thi Lao (1)
    Trevor J Wennblom (6)
    Geert Smant (2)
    Claudia K?hler (3) (4)
    Ueli Grossniklaus (5)
    Charles Spillane (1)
  • 刊名:BMC Plant Biology
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:1183KB
  • 参考文献:1. Walbot V, Evans MMS: Unique features of the plant life cycle and their consequences. / Nature Reviews Genetics 2003,4(5):369-79. CrossRef
    2. Lord EM, Russell SD: The mechanisms of pollination and fertilization in plants. / Annual Review of Cell and Developmental Biology 2002, 18:81-05. CrossRef
    3. Dresselhaus T: Cell-cell communication during double fertilization. / Current Opinion in Plant Biology 2006,9(1):41-7. CrossRef
    4. Berger F: Endosperm: the crossroad of seed development. / Current Opinion in Plant Biology 2003,6(1):42-0. CrossRef
    5. Haughn G, Chaudhury A: Genetic analysis of seed coat development in Arabidopsis. / Trends Plant Sci 2005,10(10):472-77. CrossRef
    6. Brukhin V, Curtis MD, Grossniklaus U: The angiosperm female gametophyte: No longer the forgotten generation. / Current Science 2005,89(11):1844-852.
    7. Johnston AJ, Meier P, Gheyselinck J, Wuest SE, Federer M, Schlagenhauf E, Becker JD, Grossniklaus U: Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. / Genome Biology 2007.,8(10):
    8. Scott RJ, Spielman M, Bailey J, Dickinson HG: Parent-of-origin effects on seed development in Arabidopsis thaliana. / Development 1998,125(17):3329-341.
    9. Dilkes BP, Comai L: A differential dosage hypothesis for parental effects in seed development. / Plant Cell 2004, 16:3174-180. CrossRef
    10. Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB: Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. / Science 1998,280(5362):446-50. CrossRef
    11. Raissig MT, Baroux C, Grossniklaus U: Regulation and Flexibility of Genomic Imprinting during Seed Development. / The Plant Cell Online 2011.
    12. Haig D, Westoby M: Genomic Imprinting in Endosperm - Its Effect on Seed Development in Crosses between Species, and between Different Ploidies of the Same Species, and Its Implications for the Evolution of Apomixis. / Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 1991,333(1266):1-3. CrossRef
    13. Kinoshita T, Ikeda Y, Ishikawa R: Genomic imprinting: A balance between antagonistic roles of parental chromosomes. / Seminars in Cell & Developmental Biology 2008,19(6):574-79. CrossRef
    14. Garnier O, Laoueille-Duprat S, Spillane C: Genomic imprinting in plants. / Epigenetics 2008,3(1):14-0. CrossRef
    15. O'Connell MJ, Loughran NB, Walsh TA, Donoghue MT, Schmid KJ, Spillane C: A phylogenetic approach to test for evidence of parental conflict or gene duplications associated with protein-encoding imprinted orthologous genes in placental mammals. / Mamm Genome 2010,21(9-0):486-98. CrossRef
    16. Morison IM, Ramsay JP, Spencer HG: A census of mammalian imprinting. / Trends in Genetics 2005,21(8):457-65. CrossRef
    17. Vielle-Calzada JP, Thomas J, Spillane C, Coluccio A, Hoeppner MA, Grossniklaus U: Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. / Genes Dev 1999,13(22):2971-982. CrossRef
    18. Kohler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U: The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. / Genes Dev 2003,17(12):1540-553. CrossRef
    19. Tiwari S, Schulz R, Ikeda Y, Dytham L, Bravo J, Mathers L, Spielman M, Guzman P, Oakey RJ, Kinoshita T, / et al.: MATERNALLY EXPRESSED PAB C-TERMINAL, a novel imprinted gene in Arabidopsis, encodes the conserved C-terminal domain of polyadenylate binding proteins. / Plant Cell 2008,20(9):2387-398. CrossRef
    20. Guo M, Rupe MA, Danilevskaya ON, Yang XF, Hut ZH: Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. / Plant Journal 2003,36(1):30-4. CrossRef
    21. Stupar RM, Hermanson PJ, Springer NM: Nonadditive expression and parent-of-origin effects identified by microarray and allele-specific expression profiling of maize endosperm. / Plant Physiology 2007, 145:411-25. CrossRef
    22. Shirzadi R, Andersen ED, Bjerkan KN, Gloeckle BM, Heese M, Ungru A, Winge P, Koncz C, Aalen RB, Schnittger A, / et al.: Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin-Dependent Regulation of <italic>AGAMOUS-LIKE36</italic>. / PLoS Genet 2011,7(2):e1001303. CrossRef
    23. Wolff P, Weinhofer I, Seguin J, Roszak P, Beisel C, Donoghue MTA, Spillane C, Nordborg M, Rehmsmeier M, K?hler C: High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm. / PLoS Genet 2011,7(6):e1002126.
    24. Hsieh T-F, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, / et al.: Regulation of imprinted gene expression in Arabidopsis endosperm. / Proceedings of the National Academy of Sciences 2011,108(5):1755-762. CrossRef
    25. Gehring M, Bubb KL, Henikoff S: Extensive Demethylation of Repetitive Elements During Seed Development Underlies Gene Imprinting. / Science 2009,324(5933):1447-451. CrossRef
    26. Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T: One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. / Science 2004,303(5657):521-23. CrossRef
    27. Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL: DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis. / Cell 2002,110(1):33-2. CrossRef
    28. Baroux C, Spillane C, Grossniklaus U: Genomic imprinting during seed development. / Homology Effects 2002, 46:165-14. CrossRef
    29. Jullien PE, Berger F: Gamete-specific epigenetic mechanisms shape genomic imprinting. / Curr Opin Plant Biol 2009,12(5):637-42. CrossRef
    30. Villar CB, Erilova A, Makarevich G, Trosch R, Kohler C: Control of PHERES1 imprinting in Arabidopsis by direct tandem repeats. / Mol Plant 2009,2(4):654-60. CrossRef
    31. Bachem CWB, vanderHoeven RS, deBruijn SM, Vreugdenhil D, Zabeau M, Visser RGF: Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. / Plant Journal 1996,9(5):745-53. CrossRef
    32. Autran D, Baroux C, Raissig Michael T, Lenormand T, Wittig M, Grob S, Steimer A, Barann M, Klostermeier Ulrich C, Leblanc O, / et al.: Maternal Epigenetic Pathways Control Parental Contributions to Arabidopsis Early Embryogenesis. / Cell 2011,145(5):707-19. CrossRef
    33. Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, Maiti R, Ronning CM, Rusch DB, Town CD, / et al.: Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. / Nucleic Acids Res 2003,31(19):5654-666. CrossRef
    34. Pillot M, Baroux C, Vazquez MA, Autran D, Leblanc O, Vielle-Calzada JP, Grossniklaus U, Grimanelli D: Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. / Plant Cell 22(2):307-20.
    35. Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, / et al.: Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. / Proceedings of the National Academy of Sciences 2010,107(18):8063-070. CrossRef
    36. Day RC, Herridge RP, Ambrose BA, Macknight RC: Transcriptome Analysis of Proliferating Arabidopsis Endosperm Reveals Biological Implications for the Control of Syncytial Division, Cytokinin Signaling, and Gene Expression Regulation. / Plant Physiology 2008,148(4):1964-984. CrossRef
    37. Kohler C, Page DR, Gagliardini V, Grossniklaus U: The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. / Nat Genet 2005,37(1):28-0.
    38. Tycko B: Allele-specific DNA methylation: beyond imprinting. / Hum Mol Genet 2010,19(R2):R210-20. CrossRef
    39. Meaburn EL, Schalkwyk LC, Mill J: Allele-specific methylation in the human genome Implications for genetic studies of complex disease. / Epigenetics 2010.,5(7):
    40. Shoemaker R, Deng J, Wang W, Zhang K: Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. / Genome Res 2010,20(7):883-89. CrossRef
    41. Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN, Plomin R, Mill J: Allelic skewing of DNA methylation is widespread across the genome. / Am J Hum Genet 2010,86(2):196-12. CrossRef
    42. Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJ, Koornneef M, Kakutani T: Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. / Plant J 2007,49(1):38-5. CrossRef
    43. Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D: Genome-wide demethylation of Arabidopsis endosperm. / Science 2009,324(5933):1451-454. CrossRef
    44. Baroux C, Gagliardini V, Page DR, Grossniklaus U: Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. / Genes Dev 2006,20(9):1081-086. CrossRef
    45. Gehring M, Huh JH, Hsieh T-F, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL: DEMETER DNA Glycosylase Establishes MEDEA Polycomb Gene Self-Imprinting by Allele-Specific Demethylation. / Cell 2006,124(3):495-06. CrossRef
    46. Jullien PE, Kinoshita T, Ohad N, Berger F: Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. / Plant Cell 2006,18(6):1360-372. CrossRef
    47. Wenz H, Robertson JM, Menchen S, Oaks F, Demorest DM, Scheibler D, Rosenblum BB, Wike C, Gilbert DA, Efcavitch JW: High-precision genotyping by denaturing capillary electrophoresis. / Genome Res 1998,8(1):69-0.
    48. Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ: Transcriptional regulation and function during the human cell cycle. / Nat Genet 2001,27(1):48-4. CrossRef
    49. Fukumura R, Takahashi H, Saito T, Tsutsumi Y, Fujimori A, Sato S, Tatsumi K, Araki R, Abe M: A sensitive transcriptome analysis method that can detect unknown transcripts. / Nucleic Acids Res 2003,31(16):e94. CrossRef
    50. Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E, van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek H, / et al.: Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. / Genomics 2003,82(6):606-18. CrossRef
    51. Rombauts S, Van De Peer Y, Rouze P: AFLPinSilico, simulating AFLP fingerprints. / Bioinformatics 2003,19(6):776-77. CrossRef
    52. Qin L, Prins P, Helder J: Linking cDNA-AFLP-based gene expression patterns and ESTs. / Methods Mol Biol 2006, 317:123-38.
    53. Qin L, Prins P, Jones JT, Popeijus H, Smant G, Bakker J, Helder J: GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP. / Nucleic Acids Research 2001,29(7):1616-622. CrossRef
    54. Gribnau J, Hochedlinger K, Hata K, Li E, Jaenisch R: Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization. / Genes Dev 2003,17(6):759-73. CrossRef
    55. Fitz Gerald JN, Hui PS, Berger F: Polycomb group-dependent imprinting of the actin regulator AtFH5 regulates morphogenesis in Arabidopsis thaliana. / Development 2009,136(20):3399-404. CrossRef
    56. Deichsel A, Mouysset J, Hoppe T: The ubiquitin-selective chaperone CDC-48/p97, a new player in DNA replication. / Cell Cycle 2009,8(2):185-90. CrossRef
    57. Park S, Rancour DM, Bednarek SY: In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. / Plant Physiol 2008,148(1):246-58. CrossRef
    58. Aker J, Borst JW, Karlova R, de Vries S: The Arabidopsis thaliana AAA protein CDC48A interacts in vivo with the somatic embryogenesis receptor-like kinase 1 receptor at the plasma membrane. / J Struct Biol 2006,156(1):62-1. CrossRef
    59. Aker J, Hesselink R, Engel R, Karlova R, Borst JW, Visser AJ, de Vries SC: In vivo hexamerization and characterization of the Arabidopsis AAA ATPase CDC48A complex using forster resonance energy transfer-fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. / Plant Physiol 2007,145(2):339-50. CrossRef
    60. Rancour DM, Park S, Knight SD, Bednarek SY: Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of arabidopsis CDC48. / J Biol Chem 2004,279(52):54264-4274. CrossRef
    61. Jullien PE, Berger F: Parental genome dosage imbalance deregulates imprinting in Arabidopsis. / PLoS Genet 2010,6(3):e1000885. CrossRef
    62. Glover J, Grelon M, Craig S, Chaudhury A, Dennis E: Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. / Plant J 1998,15(3):345-56. CrossRef
    63. Howarth JR, Parmar S, Barraclough PB, Hawkesford MJ: A sulphur deficiency-induced gene, sdi1, involved in the utilization of stored sulphate pools under sulphur-limiting conditions has potential as a diagnostic indicator of sulphur nutritional status. / Plant Biotechnol J 2009,7(2):200-09. CrossRef
    64. Tzafrir I, Dickerman A, Brazhnik O, Nguyen Q, McElver J, Frye C, Patton D, Meinke D: The Arabidopsis SeedGenes Project. / Nucleic Acids Res 2003,31(1):90-3. CrossRef
    65. Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, / et al.: Identification of genes required for embryo development in Arabidopsis. / Plant Physiol 2004,135(3):1206-220. CrossRef
    66. Bedard J, Kubis S, Bimanadham S, Jarvis P: Functional similarity between the chloroplast translocon component, Tic40, and the human co-chaperone, Hsp70-interacting protein (Hip). / J Biol Chem 2007,282(29):21404-1414. CrossRef
    67. Wolf JB: Cytonuclear interactions can favor the evolution of genomic imprinting. / Evolution 2009,63(5):1364-371. CrossRef
    68. Roberts RJ, Vincze T, Posfai J, Macelis D: REBASE--restriction enzymes and DNA methyltransferases. / Nucleic Acids Res 2005, (33 Database):D230-32.
    69. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T: BioRuby: bioinformatics software for the Ruby programming language. / Bioinformatics 2010,26(20):2617-619. CrossRef
    70. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, / et al.: NCBI GEO: archive for high-throughput functional genomic data. / Nucleic Acids Res 2009, (37 Database):D885-90.
    71. Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, / et al.: The Arabidopsis Information Resource (TAIR): gene structure and function annotation. / Nucleic Acids Res 2008, (36 Database):D1009-014.
    72. Raissig M, Baroux C, Grossniklaus U: Regulation and flexibility of genomic imprinting during seed development. / Plant Cell 2011, in press.
  • 作者单位:Peter C McKeown (1)
    Sylvia Laouielle-Duprat (1)
    Pjotr Prins (2)
    Philip Wolff (3) (4)
    Marc W Schmid (5)
    Mark TA Donoghue (1)
    Antoine Fort (1)
    Dorota Duszynska (1)
    Aurélie Comte (1)
    Nga Thi Lao (1)
    Trevor J Wennblom (6)
    Geert Smant (2)
    Claudia K?hler (3) (4)
    Ueli Grossniklaus (5)
    Charles Spillane (1)

    1. Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
    2. Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands
    3. Department of Biology and Zürich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, CH-8092, Zürich, Switzerland
    4. Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE, 75007, Uppsala, Sweden
    5. Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
    6. Silicon Life Sciences, Minneapolis, MN, USA
文摘
Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was confirmed via allele-specific transcript analysis across a range of different accessions. Differentially methylated regions were identified adjacent to ATCDC48 and PDE120, which may represent candidate imprinting control regions. Finally, we demonstrate that expression levels of these three genes in vegetative tissues are MET1-dependent, while their uniparental maternal expression in the seed is not dependent on MET1. Conclusions Using a cDNA-AFLP transcriptome profiling approach, we have identified three genes, ATCDC48, PDE120 and MS5-like which represent novel maternally expressed imprinted genes in the Arabidopsis thaliana seed. The extent of overlap between our cDNA-AFLP screen for maternally expressed imprinted genes, and other screens for imprinted and endosperm-expressed genes is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700