Genetic variation in TLR or NFkappaB pathways and the risk of breast cancer: a case-control study
详细信息    查看全文
  • 作者:Alexa J Resler (1) (3) (5)
    Kathleen E Malone (1) (3)
    Lisa G Johnson (1)
    Mari Malkki (2)
    Effie W Petersdorf (2)
    Barbara McKnight (1) (4)
    Margaret M Madeleine (1) (3)
  • 关键词:Breast cancer ; Genetic variation ; Inflammation ; TLR ; NFκB
  • 刊名:BMC Cancer
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 全文大小:226KB
  • 参考文献:1. Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. / Nature 2008, 454:436-44. CrossRef
    2. Mantovani A, Garlanda C, Allavena P: Molecular pathways and targets in cancer-related inflammation. / Ann Med 2010, 42:161-70. CrossRef
    3. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A: Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. / Carcinogenesis 2009, 30:1073-081. CrossRef
    4. Coussens LM, Werb Z: Inflammation and cancer. / Nature 2002, 420:860-67. CrossRef
    5. Balkwill F, Charles KA, Mantovani A: Smoldering and polarized inflammation in the initiation and promotion of malignant disease. / Cancer Cell 2005, 7:211-17. CrossRef
    6. Mantovani A: Cancer: inflaming metastasis. / Nature 2009, 457:36-7. CrossRef
    7. Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. / Cell 2011, 144:646-74. CrossRef
    8. Ben-Neriah Y, Karin M: Inflammation meets cancer, with NF-kappaB as the matchmaker. / Nat Immunol 2011, 12:715-23. CrossRef
    9. Didonato JA, Mercurio F, Karin M: NF-kappaB and the link between inflammation and cancer. / Immunol Rev 2012, 246:379-00. CrossRef
    10. Li Q, Verma IM: NF-kappaB regulation in the immune system. / Nat Rev Immunol 2002, 2:725-34. CrossRef
    11. Xiao C, Ghosh S: NF-kappaB, an evolutionarily conserved mediator of immune and inflammatory responses. / Adv Exp Med Biol 2005, 560:41-5. CrossRef
    12. Hayden MS, West AP, Ghosh S: NF-kappaB and the immune response. / Oncogene 2006, 25:6758-780. CrossRef
    13. Viatour P, Merville MP, Bours V, Chariot A: Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. / Trends Biochem Sci 2005, 30:43-2. CrossRef
    14. Dolcet X, Llobet D, Pallares J, Matias-Guiu X: NF-kB in development and progression of human cancer. / Virchows Arch 2005, 446:475-82. CrossRef
    15. Sun SC, Xiao G: Deregulation of NF-kappaB and its upstream kinases in cancer. / Cancer Metastasis Rev 2003, 22:405-22. CrossRef
    16. Karin M, Cao Y, Greten FR, Li ZW: NF-kappaB in cancer: from innocent bystander to major culprit. / Nat Rev Cancer 2002, 2:301-10. CrossRef
    17. Karin M: Nuclear factor-kappaB in cancer development and progression. / Nature 2006, 441:431-36. CrossRef
    18. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ: The genomic landscapes of human breast and colorectal cancers. / Science 2007, 318:1108-113. CrossRef
    19. Rakoff-Nahoum S, Medzhitov R: Toll-like receptors and cancer. / Nat Rev Cancer 2009, 9:57-3. CrossRef
    20. Li X, Jiang S, Tapping RI: Toll-like receptor signaling in cell proliferation and survival. / Cytokine 2010, 49:1-. CrossRef
    21. Merrell MA, Ilvesaro JM, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E: Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. / Mol Cancer Res 2006, 4:437-47. CrossRef
    22. Yang H, Zhou H, Feng P, Zhou X, Wen H, Xie X: Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion. / J Exp Clin Cancer Res 2010, 29:92. CrossRef
    23. Xie W, Wang Y, Huang Y, Yang H, Wang J, Hu Z: Toll-like receptor 2 mediates invasion via activating NF-kappaB in MDA-MB-231 breast cancer cells. / Biochem Biophys Res Commun 2009, 379:1027-032. CrossRef
    24. Karban AS, Okazaki T, Panhuysen CI, Gallegos T, Potter JJ, Bailey-Wilson JE: Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. / Hum Mol Genet 2004, 13:35-5. CrossRef
    25. Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW: Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. / Proc Natl Acad Sci U S A 1997, 94:3195-199. CrossRef
    26. Kroeger KM, Carville KS, Abraham LJ: The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. / Mol Immunol 1997, 34:391-99. CrossRef
    27. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M: TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. / Nat Genet 2000, 25:187-91. CrossRef
    28. Li CI, Malone KE, Porter PL, Weiss NS, Tang MT, Cushing-Haugen KL: Relationship between long durations and different regimens of hormone therapy and risk of breast cancer. / JAMA 2003, 289:3254-263. CrossRef
    29. Hankey BF, Ries LA, Edwards BK: The surveillance, epidemiology, and end results program: a national resource. / Cancer Epidemiol Biomark Prev 1999, 8:1117-121.
    30. Edlund CK, Lee WH, Li D, Van Den Berg DJ, Conti DV: Snagger: a user-friendly program for incorporating additional information for tagSNP selection. / BMC Bioinforma 2008, 9:174. CrossRef
    31. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG: Genome-wide association study identifies novel breast cancer susceptibility loci. / Nature 2007, 447:1087-093. CrossRef
    32. Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M: Genome-wide association study identifies five new breast cancer susceptibility loci. / Nat Genet 2010, 42:504-07. CrossRef
    33. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. / Nat Genet 2006, 38:904-09. CrossRef
    34. Dudoit S, van der Laan MJ, Pollard KS: Multiple testing. Part I. Single-step procedures for control of general type I error rates. / Stat Appl Genet Mol Biol 2004, 3:Article13.
    35. Chen LS, Hutter CM, Potter JD, Liu Y, Prentice RL, Peters U: Insights into colon cancer etiology via a regularized approach to gene set analysis of GWAS data. / Am J Hum Genet 2010, 86:860-71. CrossRef
    36. Browning BL, Browning SR: A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. / Am J Hum Genet 2009, 84:210-23. CrossRef
    37. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE: A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. / Nat Genet 2007, 39:870-74. CrossRef
    38. Holm S: A simple sequentially rejective multiple test procedure. / Scand J Stat 1979, 6:65-0.
    39. Blander JM: Analysis of the TLR/NF-kappaB pathway in antigen-presenting cells in malignancies promoted by inflammation. / Methods Mol Biol 2009, 512:99-17. CrossRef
    40. Kawai T, Akira S: Signaling to NF-kappaB by Toll-like receptors. / Trends Mol Med 2007, 13:460-69. CrossRef
    41. Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG: A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). / Nat Genet 2009, 41:579-84. CrossRef
    42. Huijts PE, Vreeswijk MP, Kroeze-Jansema KH, Jacobi CE, Seynaeve C, Krol-Warmerdam EM: Clinical correlates of low-risk variants in FGFR2, TNRC9, MAP3K1, LSP1 and 8q24 in a Dutch cohort of incident breast cancer cases. / Breast Cancer Res 2007, 9:R78. CrossRef
    43. Klein G, Vellenga E, Fraaije MW, Kamps WA, de Bont ES: The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. / Crit Rev Oncol Hematol 2004, 50:87-00. CrossRef
    44. Bond M, Fabunmi RP, Baker AH, Newby AC: Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. / FEBS Lett 1998, 435:29-4. CrossRef
    45. Gasparian AV, Fedorova MD, Kisselev FL: Regulation of matrix metalloproteinase-9 transcription in squamous cell carcinoma of uterine cervix: the role of human papillomavirus gene E2 expression and activation of transcription factor NF-kappaB. / Biochemistry (Mosc) 2007, 72:848-53. CrossRef
    46. Somiari SB, Somiari RI, Heckman CM, Olsen CH, Jordan RM, Russell SJ: Circulating MMP2 and MMP9 in breast cancer—potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories. / Int J Cancer 2006, 119:1403-411. CrossRef
    47. Wu ZS, Wu Q, Yang JH, Wang HQ, Ding XD, Yang F: Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. / Int J Cancer 2008, 122:2050-056. CrossRef
    48. Przybylowska K, Kluczna A, Zadrozny M, Krawczyk T, Kulig A, Rykala J: Polymorphisms of the promoter regions of matrix metalloproteinases genes MMP-1 and MMP-9 in breast cancer. / Breast Cancer Res Treat 2006, 95:65-2. CrossRef
    49. Lei H, Hemminki K, Altieri A, Johansson R, Enquist K, Hallmans G: Promoter polymorphisms in matrix metalloproteinases and their inhibitors: few associations with breast cancer susceptibility and progression. / Breast Cancer Res Treat 2007, 103:61-9. CrossRef
    50. McColgan P, Sharma P: Polymorphisms of matrix metalloproteinases 1, 2, 3 and 9 and susceptibility to lung, breast and colorectal cancer in over 30,000 subjects. / Int J Cancer 2009, 125:1473-478. CrossRef
    51. Zhou P, Du LF, Lv GQ, Yu XM, Gu YL, Li JP: Current evidence on the relationship between four polymorphisms in the matrix metalloproteinases (MMP) gene and breast cancer risk: a meta-analysis. / Breast Cancer Res Treat 2011, 127:813-18. CrossRef
    52. Inoue J, Gohda J, Akiyama T, Semba K: NF-kappaB activation in development and progression of cancer. / Cancer Sci 2007, 98:268-74. CrossRef
    53. Pomerantz JL, Baltimore D: NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. / EMBO J 1999, 18:6694-704. CrossRef
    54. Sato Y, Goto Y, Narita N, Hoon DS: Cancer cells expressing Toll-like receptors and the tumor microenvironment. / Cancer Microenviron 2009,2(Suppl 1):205-14. CrossRef
    55. Chen R, Alvero AB, Silasi DA, Steffensen KD, Mor G: Cancers take their Toll—the function and regulation of Toll-like receptors in cancer cells. / Oncogene 2008, 27:225-33. CrossRef
    56. Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-Sarfaty C: Silent (synonymous) SNPs: should we care about them? / Methods Mol Biol 2009, 578:23-9. CrossRef
    57. Etokebe GE, Knezevic J, Petricevic B, Pavelic J, Vrbanec D, Dembic Z: Single-nucleotide polymorphisms in genes encoding toll-like receptor -2, -3, -4, and -9 in case-control study with breast cancer. / Genet Test Mol Biomark 2009, 13:729-34. CrossRef
    58. Berger R, Fiegl H, Goebel G, Obexer P, Ausserlechner M, Doppler W: Toll-like receptor 9 expression in breast and ovarian cancer is associated with poorly differentiated tumors. / Cancer Sci 2010, 101:1059-066. CrossRef
    59. Gonzalez-Reyes S, Marin L, Gonzalez L, Gonzalez LO, del Casar JM, Lamelas ML: Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. / BMC Cancer 2010, 10:665. CrossRef
    60. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A: Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. / Nat Genet 2007, 39:1329-337. CrossRef
    61. Gaudet MM, Egan KM, Lissowska J, Newcomb PA, Brinton LA, Titus-Ernstoff L: Genetic variation in tumor necrosis factor and lymphotoxin-alpha (TNF-LTA) and breast cancer risk. / Hum Genet 2007, 121:483-90. CrossRef
    62. Kohaar I, Tiwari P, Kumar R, Nasare V, Thakur N, Das BC: Association of single nucleotide polymorphisms (SNPs) in TNF-LTA locus with breast cancer risk in Indian population. / Breast Cancer Res Treat 2009, 114:347-55. CrossRef
    63. Fang F, Yao L, Yu XJ, Yu L, Wu Q, Yu L: TNFalpha -308 G/A polymorphism is associated with breast cancer risk: a meta-analysis involving 10,184 cases and 12,911 controls. / Breast Cancer Res Treat 2010, 122:267-71. CrossRef
    64. Madeleine MM, Johnson LG, Malkki M, Resler AJ, Petersdorf EW, McKnight B: Genetic variation in proinflammatory cytokines IL6, IL6R, TNF-region, and TNFRSF1A and risk of breast cancer. / Breast Cancer Res Treat 2011, 129:887-99. CrossRef
    65. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/13/219/prepub
  • 作者单位:Alexa J Resler (1) (3) (5)
    Kathleen E Malone (1) (3)
    Lisa G Johnson (1)
    Mari Malkki (2)
    Effie W Petersdorf (2)
    Barbara McKnight (1) (4)
    Margaret M Madeleine (1) (3)

    1. Program in Epidemiology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA
    3. Department of Epidemiology, University of Washington, Health Sciences Building, NE Pacific Street, Seattle, WA, 98195, USA
    5. Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Mail Stop M4-C308, Seattle, WA, 98109, USA
    2. Program in Immunogenetics, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA
    4. Department of Biostatistics, University of Washington, Health Sciences Building, NE Pacific Street, Seattle, WA, 98195, USA
  • ISSN:1471-2407
文摘
Background Toll-like receptors (TLRs) and the transcription factor nuclear factor-κB (NFκB) are important in inflammation and cancer. Methods We examined the association between breast cancer risk and 233 tagging single nucleotide polymorphisms within 31 candidate genes involved in TLR or NFκB pathways. This population-based study in the Seattle area included 845 invasive breast cancer cases, diagnosed between 1997 and 1999, and 807 controls aged 65-9. Results Variant alleles in four genes were associated with breast cancer risk based on gene-level tests: MAP3K1, MMP9, TANK, and TLR9. These results were similar when the risk of breast cancer was examined within ductal and luminal subtypes. Subsequent exploratory pathway analyses using the GRASS algorithm found no associations for genes in TLR or NFκB pathways. Using publicly available CGEMS GWAS data to validate significant findings (N = 1,145 cases, N = 1,142 controls), rs889312 near MAP3K1 was confirmed to be associated with breast cancer risk (P = 0.04, OR 1.15, 95% CI 1.01-.30). Further, two SNPs in TANK that were significant in our data, rs17705608 (P = 0.05) and rs7309 (P = 0.04), had similar risk estimates in the CGEMS data (rs17705608 OR 0.83, 95% CI 0.72-.96; CGEMS OR 0.90, 95% CI 0.80-.01 and rs7309 OR 0.83, 95% CI 0.73-.95; CGEMS OR 0.91, 95% CI 0.81-.02). Conclusions Our findings suggest plausible associations between breast cancer risk and genes in TLR or NFκB pathways. Given the few suggestive associations in our data and the compelling biologic rationale for an association between genetic variation in these pathways and breast cancer risk, further studies are warranted that examine these effects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700