Novel genetic susceptibility loci for diabetic end-stage renal disease identified through robust naive Bayes classification
详细信息    查看全文
  • 作者:Francesco Sambo (1)
    Alberto Malovini (2) (3)
    Niina Sandholm (4) (5) (6)
    Monica Stavarachi (4) (7)
    Carol Forsblom (4) (5)
    Ville-Petteri M?kinen (8) (9)
    Valma Harjutsalo (10) (4) (5)
    Raija Lithovius (4) (5)
    Daniel Gordin (4) (5)
    Maija Parkkonen (4) (5)
    Markku Saraheimo (4) (5)
    Lena M. Thorn (4) (5)
    Nina Tolonen (4) (5)
    Johan Wadén (4) (5)
    Bing He (11)
    Anne-May ?sterholm (11)
    Jaako Tuomilehto (10) (12) (13)
    Maria Lajer (14)
    Rany M. Salem (15) (16) (17)
    Amy Jayne McKnight (18)
    Lise Tarnow (20) (21)
    Nicolae M. Panduru (22) (4)
    Nicola Barbarini (2)
    Barbara Di Camillo (1)
    Gianna M. Toffolo (1)
    Karl Tryggvason (10)
    Riccardo Bellazzi (2)
    Claudio Cobelli (1)
    Per-Henrik Groop (23) (4) (5)
  • 关键词:Bag of Naive Bayes ; Diabetic nephropathy ; End ; stage renal disease ; Susceptibility loci
  • 刊名:Diabetologia
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:57
  • 期:8
  • 页码:1611-1622
  • 全文大小:519 KB
  • 参考文献:1. Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T (1983) Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25:496-01 CrossRef
    2. Groop PH, Thomas MC, Moran JL et al (2009) The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58:1651 CrossRef
    3. Parving HH (1996) Initiation and progression of diabetic nephropathy. N Engl J Med 335:1682-683 CrossRef
    4. Rossing P, Hougaard P, Parving HH (2002) Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care 25:859-64 CrossRef
    5. Forsblom C, Harjutsalo V, Thorn LM et al (2011) Competing-risk analysis of ESRD and death among patients with type 1 diabetes and macroalbuminuria. J Am Soc Nephrol 22:537-44 CrossRef
    6. Seaquist ER, Goetz FC, Rich S, Barbosa J (1989) Familial clustering of diabetic kidney disease. N Engl J Med 320:1161-165 CrossRef
    7. Harjutsalo V, Katoh S, Sarti C, Tajima N, Tuomilehto J (2004) Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. Diabetes 53:2449-454 CrossRef
    8. Pezzolesi MG, Poznik GD, Mychaleckyj JC et al (2009) Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes 58:1403-410 CrossRef
    9. Craig DW, Millis MP, DiStefano JK (2009) Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes. Diabet Med 26:1090-098 CrossRef
    10. Sandholm N, Salem RM, McKnight AJ et al (2012) New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet 8:e1002921 CrossRef
    11. Bansal V, Libiger O, Torkamani A, Schork NJ (2010) Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773-85 CrossRef
    12. Thorn LM, Forsblom C, Fagerudd J et al (2005) Metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care 28:2019-024 CrossRef
    13. Sambo F, Trifoglio E, Di Camillo B, Toffolo GM, Cobelli C (2012) Bag of Naive Bayes: biomarker selection and classification from genome-wide SNP data. BMC Bioinforma 13(Suppl 14):S2 CrossRef
    14. Tarnow L, Groop PH, Hadjadj S et al (2008) European rational approach for the genetics of diabetic complications—EURAGEDIC: patient populations and strategy. Nephrol Dial Transplant 23:161-68 CrossRef
    15. Makinen VP, Forsblom C, Thorn LM et al (2008) Metabolic phenotypes, vascular complications, and premature deaths in a population of 4,197 patients with type 1 diabetes. Diabetes 57:2480-487 CrossRef
    16. Bergman RN, Stefanovski D, Buchanan TA et al (2011) A better index of body adiposity. Obesity (Silver Spring) 19:1083-089 CrossRef
    17. Niemi J, Makinen VP, Heikkonen J et al (2009) Estimation of VLDL, IDL, LDL, HDL2, apoA-I, and apoB from the Friedewald inputs—apoB and IDL, but not LDL, are associated with mortality in type 1 diabetes. Ann Med 41:451-61 CrossRef
    18. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499-02
    19. Levey AS, Stevens LA (2010) Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis 55:622-27 CrossRef
    20. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559-75 CrossRef
    21. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904-09 CrossRef
    22. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529 CrossRef
    23. 1000 Genomes Project Consortium, Abecasis GR, Auton A et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56-5 CrossRef
    24. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412-24 CrossRef
    25. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190-191 CrossRef
    26. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289-00
    27. O'Connor BP, Eun SY, Ye Z et al (2008) Semaphorin 6D regulates the late phase of CD4+ T cell primary immune responses. Proc Natl Acad Sci U S A 105:13015-3020 CrossRef
    28. Zhou T, He X, Cheng R et al (2012) Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia 55:255-66 CrossRef
    29. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679-83 CrossRef
    30. Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225-234
    31. Surendran K, McCaul SP, Simon TC (2002) A role for Wnt-4 in renal fibrosis. Am J Physiol Renal Physiol 282:F431–F441
    32. Terada Y, Tanaka H, Okado T et al (2003) Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J Am Soc Nephrol 14:1223-233 CrossRef
    33. Lin CL, Wang JY, Huang YT, Kuo YH, Surendran K, Wang FS (2006) Wnt/beta-catenin signaling modulates survival of high glucose-stressed mesangial cells. J Am Soc Nephrol 17:2812-820 CrossRef
    34. Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics 26:445-55 CrossRef
    35. Gibson G (2012) Rare and common variants: twenty arguments. Nat Rev Genet 13:135-45 CrossRef
    36. Mukhopadhyay I, Feingold E, Weeks DE, Thalamuthu A (2010) Association tests using kernel-based measures of multi-locus genotype similarity between individuals. Genet Epidemiol 34:213-21
    37. Lee S, Emond MJ, Bamshad MJ et al (2012) Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 91:224-37 CrossRef
    38. Di Camillo B, Sambo F, Toffolo G, Cobelli C (2013) ABACUS: an entropy based cumulative bivariate statistic robust to rare variants and different direction of genotype effect. Bioinformatics 30:384-91
    39. Di Camillo B, Sanavia T, Martini M et al (2012) Effect of size and heterogeneity of samples on biomarker discovery: synthetic and real data assessment. PLoS One 7:e32200 CrossRef
    40. Sebastiani P, Ramoni MF, Nolan V, Baldwin CT, Steinberg MH (2005) Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet 37:435-40 CrossRef
    41. Sebastiani P, Solovieff N, Dewan AT et al (2012) Genetic signatures of exceptional longevity in humans. PLoS One 7:e29848 CrossRef
    42. Malovini A, Barbarini N, Bellazzi R, de Michelis F (2012) Hierarchical naive Bayes for genetic association studies. BMC Bioinforma 13(Suppl 14):S6 CrossRef
  • 作者单位:Francesco Sambo (1)
    Alberto Malovini (2) (3)
    Niina Sandholm (4) (5) (6)
    Monica Stavarachi (4) (7)
    Carol Forsblom (4) (5)
    Ville-Petteri M?kinen (8) (9)
    Valma Harjutsalo (10) (4) (5)
    Raija Lithovius (4) (5)
    Daniel Gordin (4) (5)
    Maija Parkkonen (4) (5)
    Markku Saraheimo (4) (5)
    Lena M. Thorn (4) (5)
    Nina Tolonen (4) (5)
    Johan Wadén (4) (5)
    Bing He (11)
    Anne-May ?sterholm (11)
    Jaako Tuomilehto (10) (12) (13)
    Maria Lajer (14)
    Rany M. Salem (15) (16) (17)
    Amy Jayne McKnight (18)
    Lise Tarnow (20) (21)
    Nicolae M. Panduru (22) (4)
    Nicola Barbarini (2)
    Barbara Di Camillo (1)
    Gianna M. Toffolo (1)
    Karl Tryggvason (10)
    Riccardo Bellazzi (2)
    Claudio Cobelli (1)
    Per-Henrik Groop (23) (4) (5)

    1. Department of Information Engineering, University of Padova, Padova, Italy
    2. Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
    3. IRCCS Fondazione Salvatore Maugeri, Pavia, Italy
    4. Folkh?lsan Institute of Genetics, Folkh?lsan Research Centre, Helsinki, Finland
    5. Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, PO Box 63, FI-00014, Helsinki, Finland
    6. Department of Biomedical Engineering and Computational Science, Aalto University, School of Science, Helsinki, Finland
    7. Department of Genetics, University of Bucharest, Bucharest, Romania
    8. Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
    9. South Australian Health and Medical Research Institute, Adelaide, Australia
    10. Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
    11. Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
    12. Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
    13. Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
    14. Clinical Research Department, Steno Diabetes Centre, Gentofte, Denmark
    15. Department of Genetics, Harvard Medical School, Boston, MA, USA
    16. Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
    17. Department of Endocrinology, Children’s Hospital Boston, Boston, MA, USA
    18. Nephrology Research, Centre for Public Health, Queen’s University of Belfast, Belfast, UK
    20. Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
    21. Research Unit, Nordsjaellands Hospital, Hilleroed, Denmark
    22. Department of Pathophysiology, 2nd Clinical Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
    23. Baker IDI Heart & Diabetes Institute, Melbourne, Australia
  • ISSN:1432-0428
文摘
Aims/hypothesis Diabetic nephropathy is a major diabetic complication, and diabetes is the leading cause of end-stage renal disease (ESRD). Family studies suggest a hereditary component for diabetic nephropathy. However, only a few genes have been associated with diabetic nephropathy or ESRD in diabetic patients. Our aim was to detect novel genetic variants associated with diabetic nephropathy and ESRD. Methods We exploited a novel algorithm, ‘Bag of Naive Bayes- whose marker selection strategy is complementary to that of conventional genome-wide association models based on univariate association tests. The analysis was performed on a genome-wide association study of 3,464 patients with type 1 diabetes from the Finnish Diabetic Nephropathy (FinnDiane) Study and subsequently replicated with 4,263 type 1 diabetes patients from the Steno Diabetes Centre, the All Ireland-Warren 3-Genetics of Kidneys in Diabetes UK collection (UK–Republic of Ireland) and the Genetics of Kidneys in Diabetes US Study (GoKinD US). Results Five genetic loci (WNT4/ZBTB40-rs12137135, RGMA/MCTP2-rs17709344, MAPRE1P2-rs1670754, SEMA6D/SLC24A5-rs12917114 and SIK1-rs2838302) were associated with ESRD in the FinnDiane study. An association between ESRD and rs17709344, tagging the previously identified rs12437854 and located between the RGMA and MCTP2 genes, was replicated in independent case–control cohorts. rs12917114 near SEMA6D was associated with ESRD in the replication cohorts under the genotypic model (p--.05), and rs12137135 upstream of WNT4 was associated with ESRD in Steno. Conclusions/interpretation This study supports the previously identified findings on the RGMA/MCTP2 region and suggests novel susceptibility loci for ESRD. This highlights the importance of applying complementary statistical methods to detect novel genetic variants in diabetic nephropathy and, in general, in complex diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700