Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes
详细信息    查看全文
  • 作者:D. Lee Hamilton (1)
    John A. Findlay (1)
    Gemma Montagut (1)
    Paul J. Meakin (1)
    Dawn Bestow (1)
    Susan M. Jalicy (1)
    Michael L. J. Ashford (1)
  • 关键词:Amyloid ; BACE1 ; Glucose uptake ; Glut4 ; Insulin ; PI3K ; Skeletal muscle ; Type 2 diabetes
  • 刊名:Diabetologia
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:57
  • 期:8
  • 页码:1684-1692
  • 全文大小:781 KB
  • 参考文献:1. Zierath JR, Krook A, Wallberg-Henriksson H (2000) Insulin action and insulin resistance in human skeletal muscle. Diabetologia 43:821-35 CrossRef
    2. Petersen KF, Shulman GI (2006) Etiology of insulin resistance. Am J Med 119:S10–S16 CrossRef
    3. Defronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32:S157–S163 CrossRef
    4. Fink RI, Wallace P, Brechtel G, Olefsky JM (1992) Evidence that glucose transport is rate-limiting for in vivo glucose uptake. Metabolism 41:897-02 CrossRef
    5. Butler PC, Kryshak EJ, Marsh M, Rizza RA (1990) Effect of insulin on oxidation of intracellularly and extracellularly derived glucose in patients with NIDDM. Evidence for primary defect in glucose transport and/or phosphorylation but not oxidation. Diabetes 39:1373-380 CrossRef
    6. Rothman DL, Magnusson I, Cline G et al (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 92:983-87 CrossRef
    7. Petersen KF, Hendler R, Price T et al (1998) 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes 47:381-86 CrossRef
    8. Cline GW, Petersen KF, Krssak M et al (1999) Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341:240-46 CrossRef
    9. Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5:237-52 CrossRef
    10. Pedersen O, Bak JF, Andersen PH et al (1990) Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 39:865-70 CrossRef
    11. Zierath JR, He L, Gumà A, Odegoard Wahlstr?m E, Klip A, Wallberg-Henriksson H (1996) Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 39:1180-189 CrossRef
    12. Ryder JW, Yang J, Galuska D et al (2000) Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes 49:647-54 CrossRef
    13. Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD (1998) Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101:2377-386 CrossRef
    14. Zisman A, Peroni OD, Abel ED et al (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6:924-28 CrossRef
    15. Kim JK, Zisman A, Fillmore JJ et al (2001) Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest 108:153-60 CrossRef
    16. Leturque A, Loizeau M, Vaulont S, Salminen M, Girard J (1996) Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT4 in skeletal muscle. Diabetes 45:23-7 CrossRef
    17. Strachan MW, Reynolds RM, Marioni RE, Price JF (2011) Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol 7:108-14 CrossRef
    18. Janson J, Laedtke T, Parisis JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474-81 CrossRef
    19. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 8:499-09 CrossRef
    20. Turner PR, O’Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70:1-2 CrossRef
    21. Meakin PJ, Harper AJ, Hamilton DL et al (2012) Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice. Biochem J 441:285-96 CrossRef
    22. Krook A, Wallberg-Henriksson H, Zierath JR (2004) Sending the signal: molecular mechanisms regulating glucose uptake. Med Sci Sports Exerc 36:1212-217 CrossRef
    23. Abdul-Ghani M, DeFronzo RA (2010) Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. doi:10.1155/2010/476279
    24. Koistinen HA, Zierath JR (2002) Regulation of glucose transport in human skeletal muscle. Ann Med 34:410-18 CrossRef
    25. Mowrer KR, Wolfe MS (2008) Promotion of BACE1 mRNA alternative splicing reduces amyloid beta-peptide production. J Biol Chem 283:18694-8701 CrossRef
    26. Wang Q, Khayat Z, Kishi K, Ebina Y, Klip A (1998) GLUT4 translocation by insulin in intact muscle cells: detection by a fast and quantitative assay. FEBS Lett 427:193-97 CrossRef
    27. Sankaranarayanan S, Price EA, Wu G et al (2008) In vivo beta-secretase 1 inhibition leads to brain Abeta lowering and increased alpha-secretase processing of amyloid precursor protein without effect on neuregulin-1. J Pharmacol Exp Ther 324:957-69 CrossRef
    28. Holland WL, Brozinick JT, Wang LP et al (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167-79 CrossRef
    29. Turinsky J, O’Sullivan DM, Bayly BP (1990) 1,2-Diacylglyceral and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem 265:16880-6885
    30. Adams JM 2nd, Pratipanawatr T, Berria R et al (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25-1 CrossRef
    31. Woods NK, Padmanabhan J (2013) Inhibition of amyloid precursor protein processing enhances gemcitabine-mediated cytotoxicity in pancreatic cancer cells. J Biol Chem 288:30114-0124 CrossRef
    32. Ishiki M, Klip A (2005) Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations and partners. Endocrinology 146:5071-078 CrossRef
    33. Kennedy JW, Hirshman MF, Gervino EV et al (1999) Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 48:1192-197 CrossRef
    34. Del Prato S, Matsuda M, Simonson DC et al (1997) Studies on the mass action effect of glucose in NIDDM and IDDM: evidence for glucose resistance. Diabetologia 40:687-97 CrossRef
    35. Jani R, Molina M, Matsuda M et al (2008) Decreased non-insulin-dependent glucose clearance contributes to the rise in fasting plasma glucose in the nondiabetic range. Diabetes Care 31:311-15 CrossRef
    36. Ciaraldi TP, Mudallar S, Barzin A (2005) Skeletal muscle GLUT1 transporter protein expression and basal leg glucose uptake are reduced in type 2 diabetes. J Clin Endocrinol Metab 90:352-58 CrossRef
    37. Vingtdeux V, Marambaud P (2012) Identification and biology of α-secretase. J Neurochem 120(Suppl 1):34-5 CrossRef
    38. Jimenez S, Torres M, Vizuete M et al (2011) Age-dependent accumulation of soluble amyloid β (Aβ) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-α (sAPPα) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3β pathway in Alzheimer mouse model. J Biol Chem 286:18414-8425 CrossRef
    39. Mattson MP, Guo ZH, Geiger JD (1999) Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism. J Neurochem 73:532-37 CrossRef
    40. Rossjohn J, Cappal R, Fell SC et al (1999) Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nat Struct Biol 6:327-31 CrossRef
    41. Eckardt K, Taube A, Eckel J (2011) Obesity-associated insulin resistance in skeletal muscle: role of lipid accumulation and physical inactivity. Rev Endocr Metab Disord 12:163-72 CrossRef
    42. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148:852-71 CrossRef
    43. Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unraveling the mechanism. Lancet 375:2267-277 CrossRef
    44. Petersen KF, Dufour S, Shulman GI (2005) Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic patients. PLoS Med 2(9):e233 CrossRef
    45. Szendroedi J, Schmid AI, Chmelik M et al (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 4:e154 CrossRef
    46. Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49:677-83 CrossRef
    47. Jiménez-Palomares M, Ramos-Rodríguez JJ, López-Acosta JF et al (2012) Increased Aβ production prompts the onset of glucose intolerance and insulin resistance. Am J Physiol Endocrinol Metab 302:E1373–E1380 CrossRef
    48. Zhang Y, Zhou B, Deng B et al (2013) Amyloid-β induces hepatic insulin resistance in vivo via JAK2. Diabetes 62:1159-166 CrossRef
  • 作者单位:D. Lee Hamilton (1)
    John A. Findlay (1)
    Gemma Montagut (1)
    Paul J. Meakin (1)
    Dawn Bestow (1)
    Susan M. Jalicy (1)
    Michael L. J. Ashford (1)

    1. Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital & Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
  • ISSN:1432-0428
文摘
Aims/hypothesis Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin. Methods Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration. Results In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C2C12 myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C2C12 myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα). Conclusions/interpretation Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K–protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700