A multidimensional fuzzy least-squares regression approach for estimating hydraulic gradients in unconfined aquifer formations and its application to the Gulf Coast aquifer in Goliad County, Texas
详细信息    查看全文
  • 作者:Venkatesh Uddameri (1)
    E. Annette Hernandez (1)
    Felipe Estrada (1)
  • 关键词:Hydraulic gradients ; Unconfined aquifer ; Fuzzy least ; squares regression ; Gulf Coast aquifer
  • 刊名:Environmental Earth Sciences
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:71
  • 期:6
  • 页码:2641-2651
  • 全文大小:1,355 KB
  • 参考文献:1. Abriola LM, Pinder GF (1982) Calculation of velocity in three space dimensions from hydraulic head measurements. Ground Water 20(2):205鈥?13. doi:10.1111/j.1745-6584.1982.tb02752.x CrossRef
    2. Baker ET (1979) Stratigraphic and hydrogeologic framework of part of the coastal plain of Texas. Texas Department of Water Resources, Texas 236
    3. Barcelona MJ, Gibb JP, A. Helfrich J, Garske EE (1985) Practical guide for ground-water sampling. SWS contract report. Illinois State Water Survey, Champaign
    4. Bardossy A, Bogardi I, Duckstein L (1990) Fuzzy regression in hydrology. Water Resour Res 26(7):1497鈥?508. doi:10.1029/WR026i007p01497 CrossRef
    5. Belsley DA, Kuh E, Welsch RE (2005) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New York
    6. Bisserier A, Boukezzoula R, Galichet S (2010) A revisited approach to linear fuzzy regression using trapezoidal fuzzy intervals. Inf Sci 180(19):3653鈥?673. doi:10.1016/j.ins.2010.06.017 CrossRef
    7. Chang Y-HO, Ayyub BM (2001) Fuzzy regression methods鈥攁 comparative assessment. Fuzzy Sets Syst 119(2):187鈥?03. doi:10.1016/S0165-0114(99)00091-3 CrossRef
    8. Cox E (1994) The fuzzy systems handbook: a practitioner鈥檚 guide to building, using, and maintaining fuzzy systems. AP Professional, Cambridge
    9. Der Kiureghian A (2008) Analysis of structural reliability under parameter uncertainties. Probab Eng Mech 23(4):351鈥?58. doi:10.1016/j.probengmech.2007.10.011 CrossRef
    10. Devlin JF (2003) A spreadsheet method of estimating best-fit hydraulic gradients using head data from multiple wells. Ground Water 41(3):316鈥?20. doi:10.1111/j.1745-6584.2003.tb02600.x CrossRef
    11. Diamond P (1988) Fuzzy least squares. Inf Sci 46(3):141鈥?57. doi:10.1016/0020-0255(88)90047-3 CrossRef
    12. Gildeh BS, Gien D (2002) A goodness of fit index to reliability analysis in fuzzy model. In: Paper presented at the 3rd WSEAS international conference on fuzzy sets and fuzzy systems. Iterlaken, Switzerland, 11鈥?4 February 2002
    13. Hamilton LC (1992) Regression with graphics: a second course in applied statistics. Duxbury Press, Belmont
    14. Hojati M, Bector CR, Smimou K (2005) A simple method for computation of fuzzy linear regression. Eur J Oper Res 166(1):172鈥?84. doi:10.1016/j.ejor.2004.01.039 CrossRef
    15. Hung W-L, Yang M-S (2006) An omission approach for detecting outliers in fuzzy regression models. Fuzzy Sets Syst 157(23):3109鈥?122. doi:10.1016/j.fss.2006.08.004 CrossRef
    16. Kao C, Chyu C (2003) Least-squares estimates in fuzzy regression analysis. Eur J Oper Res 148(2):426鈥?35. doi:10.1016/S0377-2217(02)00423-X CrossRef
    17. Karanovic M, Neville CJ, Andrews CB (2007) BIOSCREEN-AT: BIOSCREEN with an exact analytical solution. Ground Water 45(2):242鈥?45. doi:10.1111/j.1745-6584.2006.00296.x CrossRef
    18. Kaufmann A, Gupta MM (1985) Introduction to fuzzy arithmetic: theory and applications. Van Nostrand Reinhold Co., New York
    19. Kelly WE, Bogardi I (1989) Flow directions with a spreadsheet. Ground Water 27(2):245鈥?47. doi:10.1111/j.1745-6584.1989.tb00445.x CrossRef
    20. Kim KJ, Moskowitz H, Koksalan M (1996) Fuzzy versus statistical linear regression. Eur J Oper Res 92(2):417鈥?34. doi:10.1016/0377-2217(94)00352-1 CrossRef
    21. KUCC (2003) Groundwater modeling report for Kennecott Utah Copper Corporation south facilities groundwater plume southwestern Jordan Valley. Kennecott Utah Copper Corporation, Utah
    22. Mathon BR, Ozbek MM, Pinder GF (2008) Transmissivity and storage coefficient estimation by coupling the Cooper鈥揓acob method and modified fuzzy least-squares regression. J Hydrol 353(3鈥?):267鈥?74. doi:10.1016/j.jhydrol.2008.02.004 CrossRef
    23. Nasrabadi MM, Nasrabadi E, Nasrabady AR (2005) Fuzzy linear regression analysis: a multi-objective programming approach. Appl Math Comput 163(1):245鈥?51. doi:10.1016/j.amc.2004.02.008 CrossRef
    24. Newell CJ, McLeod RK, Gonzales JR (1996) BIOSCREEN natural attenuation decision support system鈥攗ser鈥檚 manual, version 1.3
    25. 脰zelkan EC, Duckstein L (2001) Fuzzy conceptual rainfall-runoff models. J Hydrol 253(1鈥?):41鈥?8. doi:10.1016/S0022-1694(01)00430-9 CrossRef
    26. Peters G (1994) Fuzzy linear regression with fuzzy intervals. Fuzzy Sets Syst 63(1):45鈥?5. doi:10.1016/0165-0114(94)90144-9 CrossRef
    27. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    28. Savic DA, Pedrycz W (1991) Evaluation of fuzzy linear regression models. Fuzzy Sets Syst 39(1):51鈥?3. doi:10.1016/0165-0114(91)90065-X CrossRef
    29. Si BC, Bodhinayake W (2005) Determining soil hydraulic properties from tension infiltrometer measurements. Soil Sci Soc Am J 69(6):1922鈥?930. doi:10.2136/sssaj2005.0022 CrossRef
    30. Silliman Frost (1998) Monitoring hydraulic gradient using three-point estimator. J Environ Eng 124(6):517鈥?23. doi:10.1061/(ASCE)0733-9372(1998)124:6(517 CrossRef
    31. Silliman SE, Mantz G (2000) The effect of measurement error on estimating the hydraulic gradient in three dimensions. Ground Water 38(1):114鈥?20. doi:10.1111/j.1745-6584.2000.tb00208.x CrossRef
    32. Tanaka H, Uejima S, Asai K (1982) Linear regression analysis with fuzzy model. IEEE Trans Syst Man Cybern 12(6):903鈥?07. doi:10.1109/tsmc.1982.4308925 CrossRef
    33. Uddameri V (2003) Estimating natural attenuation rate constants using a fuzzy framework. Ground Water Monit Rem 23(3):105鈥?11 CrossRef
    34. Uddameri V (2004) Relationships of longitudinal dispersivity and scale developed from fuzzy least-squares regressions. Environ Geol 45(8):1172鈥?178 CrossRef
    35. Uddameri V, Honnungar V (2007) Interpreting sustainable yield of an aquifer using a fuzzy framework. Environ Geol 51(6):911鈥?19 CrossRef
    36. Uddameri V, Kuchanur M (2004) Fuzzy QSARs for predicting logKoc of persistent organic pollutants. Chemosphere 54(6):771鈥?76 CrossRef
    37. Uddameri V, Kuchanur M (2007) Simulation-optimization approach to assess groundwater availability in Refugio County, TX. Environ Geol 51(6):921鈥?29 CrossRef
    38. Uddameri V, Singaraju S, Hernandez EA (2013) Identifying influencing wells for gradient estimation in the confined portion of the Gulf Coast aquifer near Kingsville, TX. Environ Earth Sci (in press)
    39. URS (2011) Remedial investigation/focused feasibility study (RI/FS). URS Corporation, 29874660
    40. Wang H, Tsaur R (2000) Insight of a fuzzy regression model. Fuzzy Sets Syst 112(3):355鈥?69. doi:10.1016/S0165-0114(97)00375-8 CrossRef
    41. Xu R, Li C (2001) Multidimensional least-squares fitting with a fuzzy model. Fuzzy Sets Syst 119(2):215鈥?23. doi:10.1016/S0165-0114(98)00350-9 CrossRef
    42. Yeh GT (1981) AT123D: analytical transient one-, two-, and three-dimensional simulation of waste transport in the aquifer system. Other information: includes 1 sheet of 48脳 reduction microfiche, ORNL-5602. Oak Ridge National Laboratory, Oak Ridge
    43. Yen KK, Ghoshray S, Roig G (1999) A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets Syst 106(2):167鈥?77. doi:10.1016/S0165-0114(97)00269-8 CrossRef
    44. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338鈥?53. doi:10.1016/S0019-9958(65)90241-X CrossRef
  • 作者单位:Venkatesh Uddameri (1)
    E. Annette Hernandez (1)
    Felipe Estrada (1)

    1. Department of Civil and Environmental Engineering, Texas Tech University, Box 41023, Lubbock, TX, 79409, USA
  • ISSN:1866-6299
文摘
Epistemic uncertainties arise during the estimation of hydraulic gradients in unconfined aquifers due to planar approximation of the water table as well as data gaps arising from factors such as instrument failures and site inaccessibility. A multidimensional fuzzy least-squares regression approach is proposed here to estimate hydraulic gradients in situations where epistemic uncertainty is present in the observed water table measurements. The hydraulic head at a well is treated as a normal (Gaussian) fuzzy variable characterized by a most likely value and a spread. This treatment results in hydraulic gradients being characterized as normal fuzzy numbers as well. The multidimensional fuzzy least-squares regression has an exact analytical form and as such can be implemented easily using matrix algebra methods. However, the method was noted to be sensitive to round-off and truncation errors when the epistemic uncertainties are small. A closeness index based on the cardinality of a fuzzy number is used to evaluate how well the regression model fits the fuzzy hydraulic head observations. A fuzzy Euclidian distance measure is used to compare two fuzzy numbers and to evaluate how fuzziness in the observed hydraulic heads affects the fuzziness in the estimated hydraulic gradients. The Euclidian distance measure is also used to ascertain the influence of each well on the fuzzy hydraulic gradient estimation. The fuzzy regression framework is illustrated by applying it to evaluate hydraulic gradients in the unconfined portion of the Gulf Coast aquifer in Goliad County, TX. The results from the case-study indicate that there is greater uncertainty associated with the estimation of the hydraulic gradients in the vertical (Z-axis) direction. The epistemic uncertainties in the hydraulic head data at the wells have a significant impact on the gradient estimates when they are of the same order of magnitude as the most likely values of the observed heads. The influence analysis indicated that 5 of the 13 wells in the network had a critical influence on at least one of the hydraulic gradients. Three wells along the northeastern section of the study area and bordering the Victoria County were noted to have the least influence on the regression estimates. The fuzzy regression framework along with the associated goodness-of-fit and influence measures provides a useful set of tools to characterize the uncertainties in the hydraulic heads and gradients arising from data gaps and planar water table approximation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700