The Influence of Benthic Macrofauna on the Erodibility of Intertidal Sediments with Varying mud Content in Three New Zealand Estuaries
详细信息    查看全文
  • 作者:Rachel J. Harris ; Conrad A. Pilditch ; Barry L. Greenfield…
  • 关键词:Functional groups ; Bioturbation ; Infauna ; Mud ; Erosion potential ; Sediment transport
  • 刊名:Estuaries and Coasts
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:39
  • 期:3
  • 页码:815-828
  • 全文大小:547 KB
  • 参考文献:Aller, R.C. 1988. Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures. In Nitrogen cycling in coastal marine environments ed. T.H. Blackburn and J. Sørensen. John Wiley and Sons Ltd.
    Amos C.L., J. Grant, G.R. Daborn, and K. Black. 1992. Sea carousel: a benthic, annular flume. Estuarine Coastal and Shelf Science 34: 557–577.CrossRef
    Andersen T.J., and M. Pejrup. 2002. Biological mediation of the settling velocity of bed material eroded from an intertidal mudflat, the Danish Wadden Sea. Estuarine Coastal and Shelf Science 54: 747–745.CrossRef
    Andersen T.J., L.C. Lund-Hansen, M. Pejrup, K.T. Jensen, and K.N. Mouritsen. 2005. Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: a possible cause for seasonal changes in sediment deposition. Journal of Marine Systems 55: 123–138.CrossRef
    Andersen T.J., J. Fredsoe, and M. Pejrup. 2007. In situ estimation of erosion and deposition thresholds by acoustic Doppler velocimeter (ADV). Estuarine Coastal and Shelf Science 75: 327–336.CrossRef
    Andersen T.J., M. Lanuru, C. van Bernem, M. Pejrup, and R. Riethmüller. 2010. Erodibility of a mixed mudflat dominated by microphytobenthos and Cerastoderma edule, East Frisian Wadden Sea, Germany. Estuarine Coastal and Shelf Science 87: 197–206.CrossRef
    Anderson M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.
    Anderson M.J. 2008. Animal-sediment relationships re-visited: characterizing species’ distributions along an environmental gradient using canonical analysis and quantile regression splines. Journal of Experimental Marine Biology and Ecology 366: 16–27.CrossRef
    Anderson M.J., R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth: Primer-E.
    Arar, E. and G. Collins. 1997. Method 445.0: In vitro determination of chlorophyll a and phaeophytin a in marine and freshwater algae by fluorescence, revision 1.2. U.S. Environmental Protection Agency, Cincinnati, OH.
    Austen I., T.J. Andersen, and K. Edelvang. 1999. The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mudflat, the Danish Wadden Sea. Estuarine Coastal and Shelf Science 49: 99–111.CrossRef
    Bartzke G., K.R. Bryan, C.A. Pilditch, and K. Huhn. 2013. On the stabilizing influence of silt on sand beds. Journal of Sedimentary Research 83: 691–703.CrossRef
    Black K.S., T.J. Tolhurst, D.M. Paterson, and S.E. Hagerthey. 2002. Working with natural cohesive sediments. Journal of Hydraulic Engineering 128: 1–7.CrossRef
    Blanchard G., J.M. Guarini, F. Orvain, and G.P. Sauriau. 2001. Dynamic behavior of benthic microalgal biomass in intertidal mudflats. Journal of Experimental Marine Biology and Ecology 264: 85–100.CrossRef
    Brotas V., T. Cabrita, A. Portugal, J. Serôdio, and F. Catarino. 1995. Spatio-temporal distribution of the microphytobenthic biomass in intertidal flats of Tagus Estuary (Portugal). Hydrobiologia 300/301: 93–104.CrossRef
    Cammen L.M. 1982. Effect of particle size on organic content and microbial abundance within four marine sediment. Marine Ecology Progress Series 9: 273–280.CrossRef
    Ciutat A., J. Widdows, and J.W. Readman. 2006. Influence of cockle Cerastoderma edule bioturbation and tidal-current cycles on resuspension of sediment and polycyclic aromatic hydrocarbons. Marine Ecology Progress Series 328: 51–64.CrossRef
    Clarke K.R., and R.N. Gorley. 2006. Primer v6: user manual/tutorial. Plymouth: PRIMER-E.
    Consalvey M., B. Jesus, R.G. Perkins, V. Brotas, G.J.C. Underwood, and D.M. Paterson. 2004. Monitoring migration and measuring biomass in benthic biofilms: the effects of dark/far-red adaptation and vertical migration on fluorescence measurements. Photosynthesis Research 81: 91–101.CrossRef
    Cummings V.J., K. Vopel, and S.F. Thrush. 2009. Terrigenous deposits in coastal marine habitats: influences on sediment geochemistry and behavior of post-settlement bivalves. Marine Ecology Progress Series 383: 173–185.CrossRef
    Day P. 1965. Particle fractionation and particle-size analysis. In Methods of soil analysis, ed. C.A. Black. Madison: American Society of Agronomy.
    Dean W.E. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44: 242–248.
    Donadi S., J. Westra, E.J. Weerman, T. van der Heide, E.M. van der Zee, J. van de Koppel, H. Olff, T. Piersma, H.W. van der Veer, and B.K. Eriksson. 2013. Non-trophic interactions control benthic producers on intertidal flats. Ecosystems 16: 1325–1335.CrossRef
    Doran, P.M. 1995. Fluid flow and mixing. In Bioprocess engineering principles. Elsevier Science & Technology Books.
    Dubois M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Colorimetric determination of sugars and related substances. Analytical Chemistry 28: 350–356.CrossRef
    Eckman J.E. 1985. Flow disruption by an animal-tube mimic affects sediment bacterial colonization. Journal of Marine Research 43: 419–435.CrossRef
    Ellis J., V. Cummings, J.E. Hewitt, S.F. Thrush, and A. Norkko. 2002. Determining effects of suspended sediment on condition of a suspension feeding bivalve (Atrina zelandica): results of a survey, a laboratory experiment and a field transplant experiment. Journal of Experimental Marine Biology and Ecology 276: 147–174.CrossRef
    Fagherazzi S., L. Carniello, L. D’Alpaos, and A. Defina. 2006. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of Sciences 103: 8337–8341.CrossRef
    Fagherazzi S., C. Palermo, M.C. Rulli, L. Carniello, and A. Defina. 2007. Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats. Journal of Geophysical Research 112: F02024. doi:10.​1029/​2006JF000572 .CrossRef
    Friend P.L., P. Ciavola, S. Cappucci, and R. Santos. 2003. Bio-dependent bed parameters as a proxy tool for sediment stability in mixed habitat intertidal areas. Continental Shelf Research 23: 1899–1917.CrossRef
    Grabowski R.C., I.G. Droppo, and G. Wharton. 2011. Erodibility of cohesive sediment: the importance of sediment properties. Earth-Science Reviews 105: 101–120.CrossRef
    Green M.O., and G. Coco. 2014. Review of wave-driven sediment resuspension and transport in estuaries. Reviews of Geophysics 52: 77–117.CrossRef
    Heller H., and R. Keren. 2002. Anionic polyacrylamide polymers effect rheological behavior of sodium-montmorillonite suspensions. Soil Society of America Journal 66: 19–25.CrossRef
    Hewitt J.E., V.J. Cummings, J.I. Ellis, G. Funell, A. Norkko, T.S. Talley, and S.F. Thrush. 2003. The role of waves in the colonisation of terrestrial sediments deposited in the marine environment. Journal of Experimental Marine Biology and Ecology 290: 19–47.CrossRef
    Huettel M., and A. Rusch. 2000. Transport and degradation of phytoplankton in permeable sediment. Limnology and Oceanography 45: 534–549.CrossRef
    Hume T.M., and C.E. Herdendorf. 1988. A geomorphic classification of estuaries and its application to coastal resource management—a New Zealand example. Ocean and Shoreline Management 11: 249–274.CrossRef
    Hunt S., K.R. Bryan, and J.C. Mullarney. 2015. The influence of wind and waves on the existence of stable intertidal morphology in meso-tidal estuaries. Geomorphology 228: 158–174.CrossRef
    Jacobs W., P. Le Hir, W. Van Kesteren, and P. Cann. 2011. Erosion threshold of sand-mud mixtures. Continental Shelf Research 31: 1–18.CrossRef
    Jesus B., V. Brotas, L. Ribeiro, C.R. Mendes, P. Cartaxana, and D.M. Paterson. 2009. Adaptations of microphytobenthos assemblages to sediment type and tidal position. Continental Shelf Research 29: 1624–1634.CrossRef
    Jones H.F.E., C.A. Pilditch, D.A. Bruesewitz, and A.M. Lohrer. 2011. Sedimentary environment influences the effect of an infaunal suspension feeding bivalve on estuarine ecosystem function. PloS One 6: e27065.CrossRef
    Jumars P.A., and A.R.M. Nowell. 1984. Fluid and sediment dynamic effects on marine benthic community structure. American Zoologist 24: 45–55.CrossRef
    Kristensen E., J.M. Neto, M. Lundkvist, L. Frederiksen, M.A. Pardal, T. Valdemarsen, and M.R. Flindt. 2013. Influence of benthic macroinvertebrates on the erodibility of estuarine cohesive sediments: density- and biomass-specific responses. Estuarine Coastal and Shelf Science 134: 80–87.CrossRef
    Lanuru M., R. Riethmüller, C. van Bernem, and K. Heymann. 2007. The effect of bed forms (crest and trough systems) on sediment erodibility on a back-barrier tidal flat of the East Frisian Wadden Sea, Germany. Estuarine Coastal and Shelf Science 72: 603–614.CrossRef
    Le Hir P., W. Roberts, O. Cazaillet, M. Chrisstie, P. Bassoullet, and C. Bacher. 2000. Characterization of intertidal flat hydrodynamics. Continental Shelf Research 20: 1433–1459.CrossRef
    Le Hir P., Y. Monbet, and F. Orvain. 2007. Sediment erodibility in sediment transport modeling: can we account for biota effects?. Continental Shelf Research 27: 1116–1142.CrossRef
    Lelieveld S.D., C.A. Pilditch, and M.O. Green. 2003. Variation in sediment stability and relation to indicators of microbial abundance in the Okura Estuary, New Zealand. Estuarine Coastal and Shelf Science 57: 123–136.CrossRef
    Lelieveld S.D., C.A. Pilditch, and M.O. Green. 2004. Effects of deposit-feeding bivalve (Macomona liliana) density on intertidal sediment stability. New Zealand Journal of Marine and Freshwater Research 38: 115–128.CrossRef
    Levin S.A. 1992. The problem of pattern and scale in ecology: the Robert H MacArthur Award lecture. Ecology 73: 1974–1967.CrossRef
    Lumborg U., T.J. Andersen, and M. Pejrup. 2006. The effects of Hydrobia ulvae and microphytobenthos on cohesive sediment dynamics on an intertidal mudflat described by means of numerical modelling. Estuarine Coastal and Shelf Science 68: 208–220.CrossRef
    Miller M.C., I.N. McMace, and P.D. Komar. 1977. Threshold of sediment motion under unidirectional currents. Sedimentology 24: 507–527.CrossRef
    Mitchener H.J., and H. Torfs. 1996. Erosion of mud/sand mixtures. Coastal Engineering 29: 1–25.CrossRef
    Norkko A., S.F. Thrush, J.E. Hewitt, V.J. Cummings, J. Norkko, J.I. Ellis, G.A. Funnell, D. Schultz, and I. MacDonald. 2002. Smothering of estuarine sandflats by terrigenous clay: the role of wind-wave disturbance and bioturbation in site-dependent macrofaunal recovery. Marine Ecology Progress Series 234: 23–41.CrossRef
    Norkko A., R. Rosenberg, S.F. Thrush, and R.B. Whitlatch. 2006. Scale- and intensity-dependent disturbance determines the magnitude of opportunistic response. Journal of Experimental Marine Biology and Ecology 330: 195–120.CrossRef
    Orvain F. 2005. A model of sediment transport under the influence of surface bioturbation: generalisation to the facultative suspension-feeder Scrobicularia plana. Marine Ecology Progress Series 286: 43–56.CrossRef
    Orvain F., P. Le Hir, and P.G. Sauriau. 2003. A model of fluff layer erosion and subsequent bed erosion in the presence of the bioturbator Hydrobia ulvae. Journal of Marine Research 31: 823–851.
    Orvain F., S. Lefebvre, J. Montepini, M. Sébire, A. Gangnery, and B. Sylvand. 2012. Spatial and temporal interaction between sediment and microphytobenthos in a temperate estuarine macro-intertidal bay. Marine Ecology Progress Series 458: 53–68.CrossRef
    Orvain F., K. Guizien, S. Lefebvre, M. Bréret, and C. Dupuy. 2014. Relevance of macrozoobenthic grazers to understand the dynamic behavior of sediment erodibility and microphytobenthos resuspension in sunny summer conditions. Journal of Sea Research 92: 46–55.CrossRef
    Panagiotopoulos I., G. Voulgaris, and M.B. Collins. 1997. The influence of clay on the threshold of movement of fine sandy beds. Coastal Engineering 32: 19–43.CrossRef
    Passarelli C., F. Olivier, D.M. Paterson, and C. Hubas. 2012. Impacts of biogenic structures on benthic assemblages: microbes, meiofauna, macrofauna and related ecosystem functions. Marine Ecology Progress Series 465: 85–97.CrossRef
    Perkins R.G., G.J.C. Underwood, V. Brotas, G. Snow, B. Jesus, and L. Ribeiro. 2001. In situ microphytobenthic primary production during low tide emersion in the Tagus Estuary, Portugal: production rates, carbon partitioning and vertical migration. Marine Ecology Progress Series 223: 101–112.CrossRef
    Pilditch C.A., J. Widdows, N.J. Kuhn, N.D. Pope, and M.D. Brinsley. 2008. Effects of low tide rainfall on the erodibility of intertidal cohesive sediments. Continental Shelf Research 28: 1854–1865.CrossRef
    Pratt D.R., C.A. Pilditch, A.M. Lohrer, and S.F. Thrush. 2013. The effects of short-term increases in turbidity on sandflat microphytobenthic productivity and nutrient fluxes. Journal of Sea Research 92: 170–177.CrossRef
    Pratt D.R., A.M. Lohrer, C.A. Pilditch, and S.F. Thrush. 2014. Changes in ecosystem function across sedimentary gradients in estuaries. Ecosystems 17: 182–194.CrossRef
    Rhoads D.C., and D.G. Young. 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. Journal of Marine Research 28: 150–178.
    Rodil I.F., A.M. Lohrer, L.D. Chiaroni, J.E. Hewitt, and S.F. Thrush. 2011. Disturbance by thin terrigenous sediment deposits: consequences for primary production and nutrient cycling. Ecological Applications 21: 416–426.CrossRef
    Rodil I.F., A.M. Lohrer, J.E. Hewitt, M. Townsend, S.F. Thrush, and M. Carbines. 2013. Tracking environmental stress gradients using three biotic integrity indices: advantages of a locally-developed traits-based approach. Ecological Indicators 34: 560–570.CrossRef
    Sandwell D.R., C.A. Pilditch, and A.M. Lohrer. 2009. Density dependent effects of an infaunal suspension-feeding bivalve (Austrovenus stutchburyi) on sandflat nutrient fluxes and microphytobenthic productivity. Journal of Experimental Marine Biology and Ecology 373: 16–25.CrossRef
    Schünemann, M. and H. Kühl. 1991. A device for erosion-measurements on naturally formed, muddy sediments: the EROMES system. Report of GKSS Research Centre GKSS 91/E/18. p 28.
    Soares C., and P. Sobral. 2009. Bioturbation and erodibility of sediments from the Tagus Estuary. Journal of Coastal Research SI 56: 1429–1433.
    Solan M., B.J. Cardinale, A.L. Downing, A.M. Engelhardt, J.L. Ruesink, and D.S. Srivastava. 2004. Extinction and ecosystem function in the marine benthos. Science 306: 177–1180.CrossRef
    Sutherland T.F., P.M. Lane, C.L. Amos, and J. Downing. 2000. The calibration of optical backscatter sensors for suspended sediment of varying darkness levels. Marine Geology 162: 587–597.CrossRef
    Thrush S.F., R.B. Whitlatch, R.D. Pridmore, J.E. Hewitt, V.J. Cummings, and M.R. Wilkinson. 1996. Scale-dependent recolonization: the role of sediment stability in a dynamic sandflat habitat. Ecology 77: 2472–2487.CrossRef
    Thrush S.F., D.C. Schneider, P. Legendre, R.B. Whitlach, P.K. Dayton, J.E. Hewitt, A.H. Hines, V.J. Cummings, S.M. Lawrie, J. Grant, R.D. Pridmore, S.J. Turner, and B.H. McArdle. 1997. Scaling-up from experiments to complex ecological systems: where to next?. Journal of Experimental Marine Biology and Ecology 216: 243–254.CrossRef
    Thrush S.F., J.E. Hewitt, A. Norkko, P.E. Nicholls, G.A. Funnell, and J. Ellis. 2003. Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Marine Ecology Progress Series 263: 101–112.CrossRef
    Thrush S.F., J.E. Hewitt, V.J. Cummings, J. Ellis, C. Hatton, A. Lohrer, and A. Norkko. 2004. Muddy waters: elevating sediment input to coastal and estuarine habitats. Frontiers in Ecology and the Environment 2: 299–306.CrossRef
    Ubertini M., S. Lefebvre, C. Rakotomalala, and F. Orvain. 2015. Impact of sediment grain-size and biofilm age on epipelic microphytobenthos resuspension. Journal of Experimental Marine Biology and Ecology 467: 52–64.CrossRef
    Underwood G.J.C., and J. Kromkamp. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 23: 93–153.CrossRef
    Underwood G.J.C., D.M. Paterson, and R.J. Parkes. 1995. The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnology and Oceanography 40: 1243–1253.CrossRef
    Underwood G.J.C., R.G. Perkins, M.C. Consalvey, A.R.M. Hanlon, K. Oxborough, N.R. Baker, and D.M. Paterson. 2005. Patterns in microphytobenthic primary productivity: species-specific variations in migratory rhythms and photosynthetic efficiency in mixed-species biofilms. Limnology and Oceanography 50: 755–767.CrossRef
    Valiela I., M. Bartholomew, A. Giblin, J. Tucker, C. Harris, P. Martinetto, M. Otter, L. Camilli, and T. Stone. 2014. Watershed deforestation and down-estuary transformations alter sources, transport, and export of suspended particles in Panamanian mangrove forests. Ecosystems 17: 96–111.CrossRef
    Van Colen C., S.F. Thrush, M. Vincx, and T. Ysebaert. 2013. Conditional responses of benthic communities to interference from an intertidal bivalve. PloS One 8: e65861.CrossRef
    van de Koppel J., P.M.J. Herman, P. Thoolen, and C.H.R. Heip. 2001. Do alternate stable states occur in natural ecosystems? Evidence form a tidal flat. Ecology 82: 3449–34461.CrossRef
    Verney R., J.C. Brun-Cottan, R. Lafite, J. Deloffre, and J.A. Taylor. 2006. Tidally-induced shear stress variability above intertidal mudflats. Case of the macrotidal Seine Estuary. Estuaries and Coasts 29: 653–664.CrossRef
    Weerman E.J., P.M.J. Herman, and J. van de Koppel. 2011. Top-down control inhibits spatial self-organization of a patterned landscape. Ecology 92: 487–495.CrossRef
    Weerman E.J., J. Van Belzen, M. Rietkerk, S. Temmerman, S. Kèfi, P.M.J. Herman, and J. van de Koppel. 2012. Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem. Ecology 93: 608–618.CrossRef
    Widdows J., and M. Brinsley. 2002. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. Journal of Sea Research 48: 143–156.CrossRef
    Widdows J., M.D. Brinsley, P.N. Salkeld, and C.H. Lucas. 2000. Influence of biota on spatial and temporal variation in sediment erodibility and material flux on a tidal flat (Westerschelde, The Netherlands). Marine Ecology Progress Series 194: 23–37.CrossRef
    Widdows J., A. Blauw, C.H.R. Heip, P.M.J. Herman, C.H. Lucas, J.J. Middelburg, S. Schmidt, M.D. Brinsley, F. Twisk, and H. Verbeek. 2004. Role of physical and biological processes in sediment dynamics of a tidal flat in Westerschelde Estuary, SW Netherlands. Marine Ecology Progress Series 274: 41–56.CrossRef
    Widdows J., P.L. Friend, A.J. Bale, M.D. Brinslet, N.D. Pope, and C.E.L. Thompson. 2007. Inter-comparison between five devices for determining erodibility of intertidal sediments. Continental Shelf Research 27: 1174–1189.CrossRef
    Woodin S.A., D.S. Wethey, J.E. Hewitt, and S.F. Thrush. 2012. Small scale terrestrial clay deposits on intertidal sandflats: behavioural changes and productivity reduction. Journal of Experimental Marine Biology and Ecology 413: 184–191.CrossRef
    Wright L.D., L.C. Schaffner, and J.P.Y. Maa. 1997. Biological mediation of bottom boundary layer processes and sediment suspension in the lower Chesapeake Bay. Marine Geology 141: 27–50.CrossRef
    Yallop M.L., D.M. Paterson, and P. Wellsbury. 2000. Interrelationships between rates of microbial production, exopolymers production, microbial biomass, and sediment stability in biofilms of intertidal sediments. Microbial Ecology 39: 116–127.CrossRef
  • 作者单位:Rachel J. Harris (1)
    Conrad A. Pilditch (1)
    Barry L. Greenfield (2)
    Vicki Moon (1)
    Ingrid Kröncke (3)

    1. School of Science, University of Waikato, Private Bag, Hamilton, 3105, New Zealand
    2. National Institute of Water and Atmospheric Research Ltd. (NIWA), PO Box 11115, Hamilton, New Zealand
    3. Department for Marine Research, Senckenberg am Meer, Südstrand 40, 26382, Wilhelmshaven, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Ecology
    Geosciences
    Environmental Management
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1559-2731
文摘
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (Ʈ c ; N m−2), erosion rate (ER; g m−2 s−1), and change in erosion rate with increasing bed shear stress (m e ; g N−1 s−1). Collectively, these measures characterized surface (Ʈ c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in Ʈ c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700