Crystal Plasticity Model Validation Using Combined High-Energy Diffraction Microscopy Data for a Ti-7Al Specimen
详细信息    查看全文
  • 作者:Todd J. Turner ; Paul A. Shade…
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:48
  • 期:2
  • 页码:627-647
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology;
  • 出版者:Springer US
  • ISSN:1543-1940
  • 卷排序:48
文摘
High-Energy Diffraction Microscopy (HEDM) is a 3-d X-ray characterization method that is uniquely suited to measuring the evolving micro-mechanical state and microstructure of polycrystalline materials during in situ processing. The near-field and far-field configurations provide complementary information; orientation maps computed from the near-field measurements provide grain morphologies, while the high angular resolution of the far-field measurements provides intergranular strain tensors. The ability to measure these data during deformation in situ makes HEDM an ideal tool for validating micro-mechanical deformation models that make their predictions at the scale of individual grains. Crystal Plasticity Finite Element Models (CPFEM) are one such class of micro-mechanical models. While there have been extensive studies validating homogenized CPFEM response at a macroscopic level, a lack of detailed data measured at the level of the microstructure has hindered more stringent model validation efforts. We utilize an HEDM dataset from an alpha-titanium alloy (Ti-7Al), collected at the Advanced Photon Source, Argonne National Laboratory, under in situ tensile deformation. The initial microstructure of the central slab of the gage section, measured via near-field HEDM, is used to inform a CPFEM model. The predicted intergranular stresses for 39 internal grains are then directly compared to data from 4 far-field measurements taken between ~4 and ~80 pct of the macroscopic yield strength. The evolution of the elastic strain state from the CPFEM model and far-field HEDM measurements up to incipient yield are shown to be in good agreement, while residual stress at the individual grain level is found to influence the intergranular stress state even upon loading. Implications for application of such an integrated computational/experimental approach to phenomena such as fatigue are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700