Propagation of a spherical shock wave in mixture of non-ideal gas and small solid particles under the influence of gravitational field with conductive and radiative heat fluxes
详细信息    查看全文
  • 作者:G. Nath
  • 关键词:Shock wave ; Piston problem ; Self ; similar solution ; Dusty gas ; Gravitational effects ; Roche model ; Conductive and radiative heat fluxes ; Mechanics of fluids
  • 刊名:Astrophysics and Space Science
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:361
  • 期:1
  • 全文大小:1,053 KB
  • 参考文献:Abdel-Raouf, A.M., Gretler, W.: J. Appl. Math. Mech. 36, 273 (1991)
    Anisimov, S.I., Spiner, O.M.: J. Appl. Math. Mech. 36, 883 (1972) CrossRef
    Arora, R., Sharma, V.D.: SIAM J. Appl. Math. 66, 1825 (2006) MATH CrossRef MathSciNet
    Carrus, P., Fox, P., Hass, F., Kopal, Z.: Astrophys. J. 113, 496 (1951) ADS CrossRef MathSciNet
    Chen, F.F.: Introduction to Plasma Physics. Plenum, New York (1974), Chap. 8
    Conforto, F.: Int. J. Non-Linear Mech. 35, 925 (2000) ADS MATH CrossRef MathSciNet
    Dryer, M.: Space Sci. Rev. 15, 403 (1958) ADS
    Elliott, L.A.: Proc. R. Soc. Lond. A 258, 287 (1960) ADS CrossRef
    Elperin, T., Ben-Dor, G., Igra, O.: Int. J. Heat Fluid Flow 8, 303 (1987) CrossRef
    Elperin, T., Ben-Dor, G., Igra, O.: Fluid Dyn. Res. 4, 239 (1988) ADS CrossRef
    Ensman, L., Burrows, A., et al.: Astrophys. J. 393, 742 (1992) ADS CrossRef
    Fedorov, A.V., Kratova, Yu.V.: Heat Transf. Res. 43, 123 (2012) CrossRef
    Feinstein, C., et al.: Astrophys. J. 526, 623 (1999) ADS CrossRef
    Geng, J.H., Groenig, H.: Exp. Fluids 28, 360 (1980) CrossRef
    Ghavamian, P., et al.: Astrophys. J. 535, 266 (2000) ADS CrossRef
    Ghoneim, A.F., Kamel, M.M., Berger, S.A., Oppenheim, A.K.: J. Fluid Mech. 117, 473 (1982) ADS CrossRef
    Gretler, W., Regenfelder, R.: Fluid Dyn. Res. 30, 293 (2002) ADS CrossRef
    Gretler, W., Regenfelder, R.: Eur. J. Mech. B, Fluids 24, 205 (2005) ADS MATH CrossRef
    Gretler, W., Regenfelder, R.: Phys. Scr. 77, 055402 (2008) ADS CrossRef
    Gretler, W., Wehle, P.: Shock Waves 3, 95 (1993) ADS MATH CrossRef
    Helliwell, J.B.: J. Fluid Mech. 37, 497 (1969) ADS MATH CrossRef
    Higashino, F., Suzuki, T.: Z. Naturforsch. A 35, 1330 (1980) ADS CrossRef
    Igra, O., Hu, G., Falcovitz, J., Wang, B.Y.: Int. J. Multiph. Flow 30, 1139 (2004) MATH CrossRef
    Kamel, M.M., Khater, H.A., Siefien, H.G., Rafat, N.M., Oppenheim, A.K.: Acta Astronaut. 4, 425 (1977) ADS MATH CrossRef
    Keiter, P.A., Drake, R.P., Knauer, J.: Phys. Rev. Lett. 89, 165003 (2002) ADS CrossRef
    Kim, K.B., Berger, S.A., Kamel, M.M., Korobeinikov, V.P., Oppenheim, A.K.: J. Fluid Mech. 71, 65 (1975) ADS MATH CrossRef
    Korolev, A.S., Pushkar, E.A.: Fluid Dyn. 49, 270 (2014) ADS MATH CrossRef
    Laumbach, D.D., Probstein, R.F.: J. Fluid Mech. 40, 833 (1970) ADS CrossRef
    Madhumita, G., Sharma, V.D.: J. Hyperbolic Differ. Equ. 1, 521 (2004) MATH CrossRef MathSciNet
    Marble, F.E.: Annu. Rev. Fluid Mech. 2, 397 (1970) ADS CrossRef
    Marshak, R.E.: Phys. Fluids 1, 24 (1958) ADS MATH CrossRef MathSciNet
    Miura, H.: Fluid Dyn. Res. 6, 251 (1990) ADS CrossRef
    Miura, H., Glass, I.I.: Proc. R. Soc. Lond. A 385, 85 (1983) ADS CrossRef
    Miura, H., Glass, I.I.: Proc. R. Soc. Lond. A 397, 295 (1985) ADS MATH CrossRef
    Moelwyn-Hughes, E.A.: Physical Chemistry. Pergamon, London (1961)
    Moses, G.A., Duderstadt, J.J.: Phys. Fluids 20, 762 (1977) ADS CrossRef
    Nath, G.: Res. Astron. Astrophys. 10, 445 (2010) ADS CrossRef
    Nath, G.: Adv. Space Res. 49, 108 (2012a) ADS CrossRef
    Nath, G.: Meccanica 47, 1797 (2012b) MATH CrossRef MathSciNet
    Nath, G.: Ain Shams Eng. J. 3, 393鈥?01 (2012c) CrossRef
    Nath, G.: Adv. Space Res. 52, 1304 (2013) ADS CrossRef MathSciNet
    Nath, G.: Shock Waves 24, 415 (2014) ADS CrossRef
    Nath, G., Vishwakarma, J.P.: Commun. Nonlinear Sci. Numer. Simul. 19, 1347 (2014) ADS CrossRef MathSciNet
    Nicastro, J.R.: Phys. Fluids 13, 2000 (1970) ADS CrossRef
    Ojha, S.N., Tiwari, M.S.: Earth Moon Planets 62, 273 (2002) ADS CrossRef
    Ojha, S.N., Takhar, H.S., Nath, O.: J. Magnetohydrodyn. Plasma Res. 8, 1 (1998)
    Pai, S.I.: Two Phase Flows. Vieweg Tracts in Pure Appl. Phys., vol. 3. Vieweg, Braunschweig (1977), Chap. V MATH CrossRef
    Pai, S.I., Menon, S., Fan, Z.Q.: Int. J. Eng. Sci. 18, 1365 (1980) MATH CrossRef
    Park, J.S., Baek, S.W.: Int. J. Heat Mass Transf. 46, 4717 (2003) MATH CrossRef
    Pomroning, G.C.: The Equations of Radiation Hydrodynamics. International Series of Monographs in Natural Philosophy, vol. 54. Pergamon, Oxford (1973)
    Popel, S.I., Gisko, A.A.: Nonlinear Process. Geophys. 13, 223 (2006) ADS CrossRef
    Popel, S.I., Tsytovich, V.N., Yu, M.Y.: Astrophys. Space Sci. 256, 107 (1998) ADS MATH CrossRef
    Raga, A.C., et al.: Rev. Mex. Astron. Astrof铆s. 35, 123 (1999) ADS
    Ranga Rao, M.P., Purohit, N.K.: Int. J. Eng. Sci. 14, 91 (1976) MATH CrossRef
    Reipurth, B., Bally, J.: Annu. Rev. Astron. Astrophys. 39, 403 (2001) ADS CrossRef
    Roberts, P.H., Wu, C.C.: Phys. Lett. A 213, 59 (1996) ADS CrossRef
    Rogers, M.H.: Astrophys. J. 152, 478 (1957) ADS CrossRef
    Rosenau, P., Frankenthal, S.: Astrophys. J. 208, 633 (1976) ADS CrossRef
    Rosenau, P., Frankenthal, S.: Phys. Fluids 21, 559 (1978) ADS CrossRef
    Sagdeev, R.Z.: In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 4, p. 23. Consultants Bureau, New York (1966)
    Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Mir, Moscow (1982) MATH
    Singh, J.B.: Astrophys. Space Sci. 88, 269 (1988) ADS CrossRef
    Singh, L.P., Singh, M., Husain, A.: Astrophys. Space Sci. 331, 597鈥?03 (2010a) ADS CrossRef
    Singh, L.P., Husain, A., Singh, M.: Meccanica 46, 437鈥?45 (2010b) CrossRef MathSciNet
    Sommerfeld, M.: Exp. Fluids 3, 197 (1985) CrossRef
    Steiner, H., Hirschler, T.: Eur. J. Mech. B, Fluids 21, 371 (2002) MATH CrossRef MathSciNet
    Steiner, H., Gretler, W., Hirschler, T.: Shock Waves 8, 139 (1998) ADS MATH CrossRef
    Sutherland, R.S., Bicknell, G.V., Dopita, M.A.: Astrophys. J. 414, 510 (1993) ADS CrossRef
    Vishwakarma, J.P., Nath, G.: Phys. Scr. 74, 493 (2006) ADS CrossRef MathSciNet
    Vishwakarma, J.P., Nath, G.: Meccanica 42, 331 (2007) MATH CrossRef MathSciNet
    Vishwakarma, J.P., Nath, G.: Meccanica 44, 239 (2009) MATH CrossRef
    Vishwakarma, J.P., Nath, G.: Phys. Scr. 81, 045401 (2010) ADS CrossRef
    Vishwakarma, J.P., Nath, G.: Adv. Eng. Res. 2, 537鈥?76 (2011)
    Vishwakarma, J.P., Nath, G.: Commun. Nonlinear Sci. Numer. Simul. 17, 154 (2012a) ADS MATH CrossRef MathSciNet
    Vishwakarma, J.P., Nath, G.: Commun. Nonlinear Sci. Numer. Simul. 17, 2382 (2012b) ADS MATH CrossRef MathSciNet
    Vishwakarma, J.P., Singh, A.K.: J. Astrophys. Astron. 30, 53 (2009) ADS CrossRef
    Vishwakarma, J.P., Nath, G., Singh, K.K.: Phys. Scr. 78, 035402 (2008) ADS CrossRef MathSciNet
    Wang, K.C.: J. Fluid Mech. 20, 447 (1964) ADS MATH CrossRef MathSciNet
    Wu, C.C., Roberts, P.H.: Phys. Rev. Lett. 70, 3424 (1993) ADS CrossRef
    Zel鈥檇ovich, Y.B., Raizer, Yu.P.: Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, vol. II. Academic Press, New York (1967)
  • 作者单位:G. Nath (1)

    1. Department of Mathematics, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
  • 出版者:Springer Netherlands
  • ISSN:1572-946X
文摘
Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under the influence of a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal gas and small solid particles, in which solid particles are uniformly distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is expressed in terms of Fourier鈥檚 law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity \(K\) and the absorption coefficient \(\alpha_{R}\) are assumed to vary with temperature and density. The medium is assumed to be under the influence of a gravitational field due to central mass \(( \bar{m} )\) at the origin (Roche Model). It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the central mass. The initial density of the ambient medium is taken to be always constant. The effects of the variation of the gravitational parameter and nonidealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is shown that due to an increase in the gravitational parameter the compressibility of the medium at any point in the flow-field behind the shock decreases and all other flow variables and the shock strength are increased. Further, it is found that the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the piston and the shock surface is reduced. The shock waves in dusty gas under the influence of a gravitational field can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, star formation in shocks and shocks in stellar explosion, rupture of a pressurized vessels and explosion in the ionosphere etc. Also, the solution obtained can be used to interpret measurements carried out by spacecraft in the solar wind and in neighborhood of the Earth鈥檚 surface. Keywords Shock wave Piston problem Self-similar solution Dusty gas Gravitational effects Roche model Conductive and radiative heat fluxes Mechanics of fluids

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700