Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures
详细信息    查看全文
  • 作者:A. I. Tsaplin ; S. V. Bochkarev
  • 关键词:liquefied gas ; cryogenic vessel ; metal composite ; deformation ; pressure ; destruction
  • 刊名:Mechanics of Composite Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:51
  • 期:6
  • 页码:721-730
  • 全文大小:521 KB
  • 参考文献:1.V. A. Zagoruchenko and A. M. Zhuravlyov, Thermophysical Properties of Gaseous and Liquid Methane [in Russian], Izdat. Gosstandart SSSR, Moscow (1969).
    2.A. Ignatkovich, B. Bosello, E. Benedetti, P. Kampane, and M. Milkovich, “Measurement of the permeability of thermally cured linings for gas pipelines and tanks,” in: Theory and practice of production technologies of the articles of composite materials and new metal alloys (TPKMM). Complex computerization of the manufacture of composite materials and their processing into products in high-technology fields of industry. Trans. Moscow Int. Sci. Conf., April 21-24, 2009, Moscow, Russia, Vol. 2, Izdat. “Maska” (2011), pp. 265-274.
    3.N. D. Tskhadaya and E. Z. Yagubov, “Effect of the volume content of fibers on the tightness of fiberglass pipes,” Konstr. Kompoz. Mater., No. 4, 49-52 (2012).
    4.A. Ghouaoula, A. Hocine, D. Chapelle, F. Karaachira, and M. L. Boubakar, “Analytical prediction of damage in the composite part of a type-3 hydrogen storage vessel,” Mech. Compos. Mater., 48, No. 1, 77-88 (2012).CrossRef
    5.V. V. Vasil’ev, A. F. Razin, and F. K. Sin’kovskii, “Optimum form of a composite pressure cylinder with a metal liner,” Kompoz. Nanostrukt., 1, No. 21, 18-24 (2014).
    6.D. V. Rosato and K. S. Grove, Winding with Glass Fiber. Development of the Method, Manufacture, Application Areas, and Design [Russian translation], Mashinostroenie, Moscow (1968).
    7.M. R. Garnich, R. W. Dalgarno, and D. J. Kenik, “Effects of moisture on matrix cracking in a cryo-cycled cross-ply laminate,” J. Compos. Mater., 45, 2783-2795 (2011).CrossRef
    8.K. Sanada, H. Sanga, and Ya. Shindo, “Cryogenic tensile and fracture properties of carbon nanofiber/polydicyclopentadiene composites fabricated by ultrasonic method,” J. Compos. Mater., 46, 1431-1438 (2012).
    9.L. V. Evseeva and S. A. Tanaeva, “Thermal behavior of composites containing carbon fibers or nanotubes under cryogenic thermal cycling,” Mech. Compos. Mater., 49, No. 2, 155-162 (2013).CrossRef
    10.A. Yoshimura, Y. Noji, T. Ogasawara, T. Yokozeki, and S. Ogihara, “Mode II fracture toughness of CFRP adhesive bonded structure at cryogenic temperature,” J. Japan Soc. Compos. Mater., 37, No. 4, 130-137 (2011).CrossRef
    11.S. Choi and B. V. Sankar, “Micromechanical analysis of composite laminates at cryogenic temperatures,” J. Compos. Mater., 40, No. 12, 1077-1091 (2006).CrossRef
    12.S. Watanabe, Y. Shindo, T. Takeda, and F. Narita, “Cryogenic mechanical response of multilayer satinweave CFRP composites with cracks,” Mech. Compos. Mater., 44, No. 4, 479-492 (2008).
    13.N. K. Kucher, A. Z. Dveyrin, M. N. Zarazovskii, and M. P. Zemtsov, “Room- and low-temperature deformation of multilayered fiberglass plastics reinforced with a fabric of sateen weave,” Mech. Compos. Mater., 40, No. 3, 217-226 (2004).CrossRef
    14.M. Sumikawa, Ya. Shindo, T. Takeda, F. Narita, S. Takano, and K. Sanada, “Analysis of Mode I interlaminar fracture and damage behavior of GFRP woven laminates at cryogenic temperatures,” J. Compos. Mater., 39, No. 22, 2053-2066 (2005).
    15.Gluhih S., Kovalov A., Tishkunov A., Akishin A., Chate A., Auzinsh E. and Kalninsh M. Identification of the elastic modulus of polymeric materials by using thin-walled cylindrical specimens,” Mech. Compos. Mater., 48, No. 1, 57-64 (2012).CrossRef
    16.A. M. Kuperman and R. A. Turusov, “Relaxation characteristics of reinforced plastics in tension of ring specimens by split disks,” Mech. Compos. Mater., 48, No. 3, 305-312 (2012).CrossRef
    17.S. V. Bochkarev and D. A. Gimervert, “Seepage of polymeric binder in articles formed from composite materials subjected to winding and set in a nonuniform temperature field,” Mech. Compos. Mater., 25, No. 4, 555-558 (1989).CrossRef
    18.H. Suemasu and K. Sakajiri, “A failure mechanism of pressure vessels from filament-wound hoop layer,” J. Compos. Mater., 44, 657-673 (2010).CrossRef
    19.M. S. Oliver and W. S. Johnson, “Effect of temperature on mode I interlaminar fracture of IM7/PETI-5 and IM7/977-2 laminates,” J. Compos. Mater., 43, No. 10, 1213-1219 (2009).CrossRef
    20.M. Černỳ, P. Glogar, and Z. Sucharda, “Mechanical properties of basalt fiber reinforced composites prepared by partial pyrolysis of a polymer precursor,” J. Compos. Mater., 43, No. 9, 1109-1120 (2009).CrossRef
    21.Z. F. Zhang, Ye Xin, “Mechanical properties of basalt-fiber-reinforced polyamide-6/polypropylene composites,” Mech. Compos. Mater., 50, No. 4, 509-514 (2014).
    22.A. A. Dalinkevich, K. Z. Gumargalieva, A. V. Marakhovskii, and S. S. Sukhanov, “Modern basalt fibers and polymer composite materials on their basis (review),” Konstr. Kompoz. Mater., 3, 37-54 (2010).
    23.T. K. Musina, “Heat-resistant reinforcing fibers for composite materials of the third generation,” in: Theory and practice of production technologies of the articles of composite materials and new metal alloys (TPKMM). Complex computerization of manufacture of composite materials and their processing into products in high-technology fields of industry. Trans. Moscow Int. Sci. Conf., April 21-24, 2009, Moscow, Russia, Vol. 1, Izdat. “Maska” (2011), pp. 325-330.
    24.I. V. Tikhonov, A. V. Tokarev, S. V. Shorin, V. M. Schetinin, T. E. Chernykh, and V. G. Bova, “Home aramid fibers: past–present–future,” Khim. Vol., No. 1, 3-9 (2013).
    25.K. S. Pakhomov, J. V. Antipov, I. D. Simonov, A. A. Kul’kov, and A. V. Gorbachev, “Physicomechanical stability of aramid fibers to the influence of high temperatures,” Plast. Massy, No. 1, 22-25 (2014).
    26.K. Sakata, G. Ben, and M. Toyoda, “Optimum design of the CFRP pressure vessel reinforced with SMA wire-FEM analysis and proving experiments,” J. Japan Soc. Compos. Mater., 36, No. 2, 48-54 (2010).CrossRef
    27.Yu. V. Antipov, N. M. Demina, A. A. Kul’kov, A. N. Trofimov, and P. M. Khavalkin, “Organoplastics for load-carrying structures,” Plast. Massy, No. 2, 44-48 (2013).
    28.M. A. Kumar, G. R. Reddy, Y. S. Bharathi, S. V. Naidu, and V. N. P. Naidu, “Frictional coefficient, hardness, impact strength, and chemical resistance of reinforced sisal-glass fiber epoxy hybrid composites,” J. Compos. Mater., 44, No. 26, 3195-3202 (2010).CrossRef
    29.V. A. Zorin, “Application of composite materials in the products of aviation and space-rocket facilities (review),” Konstr. Kompoz. Mater., No. 4, 44-59 (2011).
    30.A. I. Tsaplin and S. V. Bochkarev, “Modeling heat transfer when filling the CNG engine,” Transp. Al’ternat. Topl., 3, No. 21, 66-69 (2011). (Такой журнал есть на русском, изд. в Минске)
  • 作者单位:A. I. Tsaplin (1)
    S. V. Bochkarev (1)

    1. Perm National Research Polytechnical University, Perm, Russia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Ceramics,Glass,Composites,Natural Materials
    Mechanics
    Structural Mechanics
    Russian Library of Science
  • 出版者:Springer New York
  • ISSN:1573-8922
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700