Effect of contrasting climates on antioxidant and bioactive constituents in five medicinal herbs in Western Himalayas
详细信息    查看全文
  • 作者:Tarandeep Kaur ; Rohini Bhat ; Dhiraj Vyas
  • 关键词:Medicinal herbs ; Flavonoids ; Phenols ; Glutathione ; Western Himalayas ; Climate change
  • 刊名:Journal of Mountain Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:13
  • 期:3
  • 页码:484-492
  • 全文大小:331 KB
  • 参考文献:Agati G, Azzarello E, Pollastri S, et al. (2012) Flavonoids as antioxidants in plants: Location and functional significance. Plant Science 196: 67–76. DOI: 10.1016/j.plantsci.2012.07.014CrossRef
    Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant soil 39: 205–207. DOI: 10.1007/BF00018060CrossRef
    Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change 85: 159–177. DOI: 10.1007/s10584-006-9196-1CrossRef
    Bidart-Bouzat MG, Imeh-Nathaniel A (2008) Global change effects on plant chemical defenses against insect herbivores. Journal of Integrative Plant Biology 50: 1339–1354. DOI: 10.1111/j.1744-7909.2008.00751.xCrossRef
    Bravo S, García- Alonso J, Martín- Pozuelo G, et al. (2012) The influence of post-harvest UV-C hormesis on lycopene, ß-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Research International 49: 296–302. DOI: 10.1016/j.foodres.2012.07.018CrossRef
    Dedemo GC, Rodrigues FA, Roberto PG, et al. (2013) Osmoprotection in sugarcane under water deficit conditions. Plant Stress 7: 1–7.
    Deineka VI, Sorokopudov VN, Deineka LA, et al. (2008) Studies of Physalis alkekengi L. fruits as a source of xanthophylls. Pharmaceutical Chemistry Journal 42: 87–88. DOI: 10.1007/s11094-008-0065-2
    Demmig-Adams B, Adams III WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in plant sciences 1: 21–26. DOI: 10.1016/S1360-1385(96)80019-7CrossRef
    Forde BG, Roberts MR (2014) Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000 prime reports 6:37. DOI: 10.12703/P6-37
    Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell Online 17: 1866–1875. DOI: 10.1105/tpc.105.033589CrossRef
    Gadgil M, Rao PS (1998) Nurturing Biodiversity: An Indian Agenda. Centre for Environment Education. New Delhi, India.
    Gairola S, Shariff NM, Bhatt A, et al. (2010) Influence of climate change on production of secondary chemicals in high altitude medicinal plants: Issues needs immediate attention. Journal of Medicinal Plants Research 4: 1825–1829. DOI: 10.5897/JMPR10.354
    Geetha S, Sai-Ram M, Mongia SS, et al. (2003) Evaluation of antioxidant activity of leaf extract of Seabuckthorn (Hippophae rhamnoides L.) on chromium(VI) induced oxidative stress in albino rats. Journal of Ethnopharmcology 87: 247–251. DOI: 10.1016/S0378-8741(03)00154-5CrossRef
    Guy C, Kaplan F, Kopka J, et al. (2008) Metabolomics of temperature stress. Physiologia Plantarum 132: 220–235. DOI: 10.1111/j.1399-3054.2007.00999.x
    Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68: 2831–2846. DOI: 10.1016/j.phytochem.2007.09.017CrossRef
    Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Bioscience Biotechnology Biochemistry 72: 1143–1154. DOI: 10.1271/bbb.80062CrossRef
    Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BBABioenergetics 1817: 182–193. DOI: 10.1016/j.bbabio.2011.04.012CrossRef
    Jan S, Kamili AN, Hamid R, et al. (2014) Variation in adaptation mechanisms of medicinal herbs to the extreme winter conditions across the North Western Himalaya. Israel Journal of Plant Science 61: 1–11. DOI: 10.1080/07929978.2014.939828CrossRef
    Kaur T, Hussain K, Koul S, et al. (2013a) Evaluation of Nutritional and Antioxidant Status of Lepidium latifolium L: A Novel Phytofood from Ladakh. Plos One 8: e69112. DOI: 10.1371/journal.pone.0069112CrossRef
    Kaur T, Bhat HA, Raina A, et al. (2013b) Glutathione regulates enzymatic antioxidant defence with differential thiol content in perennial pepperweed and helps adapting to extreme environment. Acta Physiologiae Plantarum 35: 2501–2511. DOI: 10.1007/s11738-013-1286-xCrossRef
    Khandaker L, Akond ASMG, Ali MB, et al. (2010) Biomass yield and accumulations of bioactive compounds in red amaranth (Amaranthus tricolor L.) grown under different colored shade polyethylene in spring season. Scientia Horticulturae 123: 289–294. DOI: 10.1016/j.scienta.2009.09.012CrossRef
    Khanduri VP, Sharma CM, Singh SP (2008) The effects of climate change on plant phenology. Environmentalist 28:143–147.CrossRef
    Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution 22: 569–574. DOI: 10.1016/j.tree.2007.09.006CrossRef
    Lowry OH, Rosebrough NJ, Farr AL, et al. (1951) Protein measurement with the folin-phenol reagent. The Journal of Biological Chemistry 193: 265–275.
    Lütz C (2010) Cell physiology of plants growing in cold environments. Protoplasma 244: 53–73. DOI: 10.1007/s00709-010-0161-5CrossRef
    Melis A, Neidhardt J, Benemann JR (1998) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. Journal of Applied Phycology 10: 515–525. DOI: 10.1023/A:1008076231267CrossRef
    Metlen KL, Aschehoug ET, Callaway RM (2009) Plant behavioural ecology: dynamic plasticity in secondary metabolites. Plant Cell Environment 32: 641–653. DOI: 10.1111/j.1365-3040.2008.01910.x.CrossRef
    Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89: 332–341. DOI: 10.1890/07-0068.1CrossRef
    Mooney HA, Drake BG, Luxmoore RJ, et al. (1991) Predicting ecosystem responses to elevated CO2 concentrations. BioScience 41: 96–104.CrossRef
    Nägele T, Heyer AG (2013) Approximating subcellular organisation of carbohydrate metabolism during cold acclimation in different natural accessions of Arabidopsis thaliana. New Phytologist 198: 777–787. DOI: 10.1111/nph.12201CrossRef
    Nautiyal MC, Nautiyal BP, Prakash V (2004) Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist 24: 125–134. DOI: 10.1007/s10669-004-4803-zCrossRef
    Noctor G, Mhamdi A, Chaouchi S, et al. (2012) Glutathione in plants: an integrated overview. Plant Cell Environment 35: 454–484. DOI: 10.1111/j.1365-3040.2011.02400.xCrossRef
    Okuda T, Masuda Y, Yamanka A, et al. (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiology 97:12651267. DOI: 0032-0889/91/97/1265/03/$01.00/0CrossRef
    Portes MT, Damineli DSC, Ribeiro RV, et al. (2010) Evidence of higher photosynthetic plasticity in the early successional Guazuma ulmifolia Lam. compared to the late successional Hymenaea courbaril L. grown in contrasting light environments. Brazilian Journal of Biology 70: 75–83. DOI: 10.1590/S1519-69842010000100011
    Potters G, Horemans N, Jansen MA (2010) The cellular redox state in plant stress biology–a charging concept. Plant Physiology and Biochemistry 48: 292–300. DOI: 10.1016/j.plaphy.2009.12.007CrossRef
    Queval G, Thominet D, Vanacker H, et al. (2009) H2O2 activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Molecular Plant 2: 344–356. DOI: 10.1093/mp/ssp002CrossRef
    Rai VK (2002) Role of amino acids in plant responses to stresses. Biologia Plantarum 45 481–487. DOI: 10.1023/A:1022308229759CrossRef
    Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behaviour 6: 1720–1731. DOI: 10.4161/psb. 6.11.17613CrossRef
    Rao ML, Savithramma N (2012) Quantification of Primary and Secondary Metabolites of Svensonia hyderobadensis–A Rare Medicinal Plant. International Journal of Pharmacy and Pharmaceutical Sciences 4: 519–521.
    Salick J, Fangb Z, Byg A (2009) Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change. Global Environment Change 19: 147–155. DOI: 10.1016/j.gloenvcha.2009.01.008CrossRef
    Samant SS, Dhar U, Palni LMS (1998) Medicinal Plants of Indian Himalaya: Diversity, Distribution Potential Values. Gyan Prakash, Nainital, India.
    Sawhney SK, Singh R (2009) Introductory practical biochemistry, 2nd ed. Narosa Publishing House, New Delhi, India.
    Silvertown J (1998) Plant phenotypic plasticity and noncognitive behaviour. Trends in Ecology and Evolution 13: 255–256. DOI: 10.1016/S0169-5347(98)01398-6CrossRef
    Snow MD, Bard RR, Olszyk DM, et al. (2003) Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiologia Plantarum 117: 352–358. DOI: 10.1034/j.1399-3054.2003.00035.xCrossRef
    Soobrattee MA, Neergheen VS, Luximon-Ramma A, et al. (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research-Fundamental and Molecular Mechanisms of mutagenesis 579: 200–213. DOI: 10.1016/j.mrfmmm.2005.03.023CrossRef
    Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signaling and Behaviour 3: 525.CrossRef
    Vergeer LHT, Aarts TL, De Groot JD (1995) The ‘wasting disease’ and the effect of abiotic factors (light intensity, temperature, salinity) and infection with Labyrinthula zosterae on the phenolic content of Zostera marina shoots. Aquatic Botany 52: 35–44. DOI: 10.1016/0304-3770(95)00480-NCrossRef
    Vyas D, Kumar S, Ahuja PS (2007) Tea (Camellia sinensis) clones with shorter periods of winter dormancy exhibit lower accumulation of reactive oxygen species. Tree Physiology 27: 1253–1259. DOI: 10.1093/treephys/27.9.1253CrossRef
    Walters RG (2005) Towards an understanding of photosynthetic acclimation. Journal of Experimental Botany 56: 435–447. DOI: 10.1093/jxb/eri060CrossRef
    Zhang SB, Zhou ZK, Hu H, et al. (2005) Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains, southwest China. Forest Ecology and Management 212: 291–301. DOI: 10.1016/j.foreco.2005.03.031CrossRef
    Zhu HX, Shi Y, Zhang QN, et al. (2005) Applying 3, 5-dinitrosalicylic Acid (DNS) Method to Analyzing the Content of Potato Reducing Sugar. Chinese Potato 5: 002.
    Zobayed SMA, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiology and Biochemistry 43: 977–984.CrossRef
  • 作者单位:Tarandeep Kaur (1) (2)
    Rohini Bhat (1) (2)
    Dhiraj Vyas (1) (2)

    1. Biodiversity and Applied Botany Division, Indian Institute of Integrative Medicine (CSIR), Jammu, 180001, India
    2. Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR), Jammu, 180001, India
  • 刊物主题:Earth Sciences, general; Geography (general); Environment, general; Ecology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1993-0321
文摘
To understand the effect of climate change on constitutive antioxidant and biochemical metabolites in Western Himalayas, five medicinal herbs were selected and grown at two altitudes in Jammu (305 m) and Srinagar (1730 m) with subtropical and temperate climates, respectively. Significant variations were observed in phenols and flavonoids in Hypericum perforatum L., Matricaria chamomilla L., Thymus vulgaris L., Cynara cardunculus L. and Echinacea purpurea L. growing at two locations. High altitude temperate site show variable (up to 13 fold) increase in their content. Proteins (1.3 – 1.8 times), sugars (2.8 – 4.1 times) and free amino acid (1.04 – 1.22 times) were also higher at Srinagar (1730 m). Within these plants, H. perforatum and M. chamomilla have shown higher accumulation of phenols, xanthophylls and proline even at subtropical environment in Jammu (305 m) suggesting potential for increasing their geographical area. The results demonstrate that changing environmental conditions significantly affect the bioactive constituents, which accumulate as a defence strategy by these temperate plants. Their medicinal significance during climate change scenario has also been discussed. Keywords Medicinal herbs Flavonoids Phenols Glutathione Western Himalayas Climate change

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700