Segmental differences in the orientation of smooth muscle cells in the tunica media of porcine aortae
详细信息    查看全文
  • 作者:Zbynek Tonar (1)
    Petra Kochova (1)
    Robert Cimrman (2)
    Josef Perktold (3)
    Kirsti Witter (4)

    1. NTIS
    ; European Centre of Excellence ; Faculty of Applied Sciences ; University of West Bohemia ; Univerzitn铆 22 ; 306聽14 ; Plze艌 ; Czech Republic
    2. New Technologies - Research Centre
    ; University of West Bohemia ; Univerzitn铆 8 ; 306聽14 ; Plze艌 ; Czech Republic
    3. 156 Avenue Willowdale
    ; Outremont ; QC ; H3T1E9 ; Canada
    4. Department of Pathobiology
    ; Institute of Anatomy ; Histology and Embryology ; University of Veterinary Medicine Vienna ; Veterin盲rplatz聽1 ; 1210聽 ; Vienna ; Austria
  • 关键词:Von Mises distribution ; Thoracic aorta ; Abdominal aorta ; Pig ; Swine ; Blood vessel
  • 刊名:Biomechanics and Modeling in Mechanobiology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:14
  • 期:2
  • 页码:315-332
  • 全文大小:4,032 KB
  • 参考文献:1. Agrawal, V, Kollimada, SA, Byju, AG, Gundiah, N (2013) Regional variations in the nonlinearity and anisotropy of bovine aortic elastin. Biomech Model Mechanobiol 12: pp. 1181-1194 CrossRef
    2. Akaike, H Likelihood and the Bayes procedure. In: Bernardo, JM eds. (1980) Bayesian statistics. University Press, Valencia, pp. 143-166
    3. Cabrera-Fischer EI, Bia D, Z贸calo Y, Wray S, Armentano R (2013) The adventitia layer modulates the arterial wall elastic response to intra-aortic counterpulsation: in vivo studies. Artif Organs 37:1041鈥?048
    4. Casas-Carrillo, E, Prill-Adams, A, Price, SG, Clutter, AC, Kirkpatrick, BW (1997) Mapping genomic regions associated with growth rate in pigs. J Anim Sci 75: pp. 2047-2053
    5. Cimrman R (2013) Dist\_mixtures. https://github.com/rc/dist_mixtures. Accessed 4 Feb 2014
    6. Chen, H, Luo, T, Zhao, X, Lu, X, Huo, Y, Kassab, GS (2013) Microstructural constitutive model of active coronary media. Biomaterials 34: pp. 7575-7583 CrossRef
    7. Cheng, JK, Stoilov, I, Mecham, RP, Wagenseil, JE (2013) A fiber-based constitutive model predicts changes in amount and organization of matrix proteins with development and disease in the mouse aorta. Biomech Model Mechanobiol 12: pp. 497-510 CrossRef
    8. Driessen, NJ, Wilson, W, Bouten, CV, Baaijens, FP (2004) A computational model for collagen fibre remodelling in the arterial wall. J Theor Biol 226: pp. 53-64 CrossRef
    9. Dziodzio, T, Juraszek, A, Reineke, D, Jenni, H, Zermatten, E, Zimpfer, D, Stoiber, M, Scheikl, V, Schima, H, Grimm, M, Czerny, M (2011) Experimental acute type B aortic dissection: different sites of primary entry tears cause different ways of propagation. Ann Thorac Surg 91: pp. 724-727 CrossRef
    10. Fischer, EC, Santana, DB, Z贸calo, Y, Camus, J, Forteza, E, Armentano, R (2010) Effects of removing the adventitia on the mechanical properties of ovine femoral arteries in vivo and in vitro. Circ J 74: pp. 1014-1022 CrossRef
    11. Funder, JA, Frost, MW, Klaaborg, KE, Wierup, P, Hjortdal, V, Nygaard, H, Hasenkam, JM (2012) Aortic root distensibility after subcoronary stentless valve implantation. J Heart Valve Dis 21: pp. 181-188
    12. Gabner, S, Tonar, Z, Tichy, A, Saalm眉ller, A, Worliczek, HL, Joachim, A, Witter, K (2012) Immunohistochemical detection and quantification of T cells in the small intestine of Isospora suis-infected piglets-influence of fixation technique and intestinal segment. Microsc Res Tech 75: pp. 408-415 CrossRef
    13. Gasser, TC, Ogden, RW, Holzapfel, GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 22: pp. 15-35 CrossRef
    14. Haskett, D, Johnson, G, Zhou, A, Utzinger, U, Vande, Geest J (2010) Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech Model Mechanobiol 9: pp. 725-736 CrossRef
    15. Hemmasizadeh A, Autieri M, Darvish K (2012) Material properties of different layers of aorta. In: 38th Annual Northeast Bioengineering Conference, NEBEC 2012, Art. no. 6207033, pp 201鈥?02
    16. Holzapfel, GA (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol 238: pp. 290-302 CrossRef
    17. Holzapfel, GA, Gasser, TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech 190: pp. 4379-4403 CrossRef
    18. Holzapfel, GA, Ogden, RW (2010) Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J R Soc Interface 7: pp. 787-799 CrossRef
    19. Holzapfel, GA, Gasser, TC, Stadler, M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A Solids 21: pp. 441-463 CrossRef
    20. Horn媒 L, Netu拧il M, Vo艌avkov谩 T (2014) Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomech Model Mechanobiol 13:783鈥?99. doi:10.1007/s10237-013-0534-8
    21. Houdek, K, Mol谩膷ek, J, T艡e拧ka, V, K艡铆啪kov谩, V, Eberlov谩, L, Boudov谩, L, Nedorost, L, Tolinger, P, Ko膷ov谩, J, Kobr, J, Baxa, J, Li拧ka, V, Witter, K, Tonar, Z (2013) Focal histopathological progression of porcine experimental abdominal aortic aneurysm is mitigated by atorvastatin. Int Angiol 32: pp. 291-306
    22. Humphrey, JD, Holzapfel, GA (2012) Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech 45: pp. 805-814 CrossRef
    23. Jirkovsk谩, M, Ku膷era, T, Kal谩b, J, Jadrn铆膷ek, M, Niedobov谩, V, Jan谩膷ek, J, Kub铆nov谩, L, Moravcov谩, M, Zi啪ka, Z, Krej膷铆, V (2012) The branching pattern of villous capillaries and structural changes of placental terminal villi in type 1 diabetes mellitus. Placenta 33: pp. 343-351 14" target="_blank" title="It opens in new window">CrossRef
    24. Johnson, JJ, Jacocks, MA, Gauthier, SC, Irwin, DA, Wolf, RF, Garwe, T, Lerner, MR, Lees, JS (2013) Establishing a swine model to compare vascular prostheses in a contaminated field. J Surg Res 181: pp. 355-358 CrossRef
    25. Kim, J, Baek, S (2011) Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test. J Biomech 44: pp. 1941-1947 CrossRef
    26. Kim, J, Peruski, B, Hunley, C, Kwon, S, Baek, S (2013) Influence of surrounding tissues on biomechanics of aortic wall. Int J Exp Comput Biomech 2: pp. 105-117 CrossRef
    27. Kochov谩, P, Cimrman, R, Jan谩膷ek, J, Witter, K, Tonar, Z (2011) How to asses, visualize and compare the anisotropy of linear structures reconstructed from optical sections鈥攁 study based on histopathological quantification of human brain microvessels. J Theor Biol 286: pp. 67-78 CrossRef
    28. Kochov谩, P, Kuncov谩, J, Sv铆glerov谩, J, Cimrman, R, Mikl铆kov谩, M, Li拧ka, V, Tonar, Z (2012) The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries. Physiol Meas 33: pp. 1335-1351 CrossRef
    29. Lanir, Y (1983) Constitutive equations for fibrous connective tissue. J Biomech 16: pp. 1-12 CrossRef
    30. Lillie, MA, Armstrong, TE, G茅rard, SG, Shadwick, RE, Gosline, JM (2012) Contribution of elastin and collagen to the inflation response of the pig thoracic aorta: assessing elastin鈥檚 role in mechanical homeostasis. J Biomech 45: pp. 2133-2141 CrossRef
    31. Martufi G, Gasser TC, Appoo JJ, Di Martino ES (2014) Mechano-biology in the thoracic aortic aneurysm: a review and case study. Biomech Model Mechanobiol. doi:10.1007/s10237-014-0557-9
    32. Mayersbach, H (1956) Der Wandbau der Gef盲脽眉bergangsstrecken zwischen Arterien rein elastischen und rein muskul枚sen Typs. Anat Anz 102: pp. 333-360
    33. McLaren, CE, Legler, JM, Brittenham, GM (1994) The generalized chi-square goodness-of-fit test. J R Stat Soc Ser D Stat 43: pp. 247-258
    34. McPherson, RL, Ji, F, Wu, G, Blanton, JR, Kim, SW (2004) Growth and compositional changes of fetal tissues in pigs. J Anim Sci 82: pp. 2534-2540
    35. Mol谩cek, J, Treska, V, Kobr, J, Cert铆k, B, Skalick媒, T, Kuntscher, V, Kr铆zkov谩, V (2009) Optimization of the model of abdominal aortic aneurysm-experiment in an animal model. J Vasc Res 46: pp. 1-5
    36. Nickel R, Schummer A, Seiferle E (1996) Lehrbuch der Anatomie der Haustiere. Band III Kreislaufsystem. Haut und Hauotgane, 3rd edn. Parey Buchverlag, Berlin
    37. Okuno, T, Yamaguchi, M, Okada, T, Takahashi, T, Sakamoto, N, Ueshima, E, Sugimura, K, Sugimoto, K (2012) Endovascular creation of aortic dissection in a swine model with technical considerations. J Vasc Surg 55: pp. 1410-1418 CrossRef
    38. Ondrovics M, Silbermayr K, Mitreva M, Young ND, Razzazi-Fazeli E, Gasser RB, Joachim A (2013) Proteomic analysis of / Oesophagostomum dentatum (Nematoda) during larval transition, and the effects of hydrolase inhibitors on development. PLoS ONE 8, Art. no. e63955
    39. Reeps, C, Maier, A, Pelisek, J, H盲rtl, F, Grabher-Meier, V, Wall, WA, Essler, M, Eckstein, HH, Gee, MW (2013) Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech Model Mechanobiol 12: pp. 717-733 CrossRef
    40. Rezakhaniha, R, Agianniotis, A, Schrauwen, JT, Griffa, A, Sage, D, Bouten, CV, Vosse, FN, Unser, M, Stergiopulos, N (2012) Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 11: pp. 461-473 CrossRef
    41. Rizzoni, D, Aalkjaer, C, Ciuceis, C, Porteri, E, Rossini, C, Rosei, CA, Sarkar, A, Rosei, EA (2011) How to assess microvascular structure in humans. High Blood Press Cardiovasc Prev 18: pp. 169-177 CrossRef
    42. Roccabianca, S, Ateshian, GA, Humphrey, JD (2014) Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection. Biomech Model Mechanobiol 13: pp. 13-25 CrossRef
    43. Romeis, B (1989) Mikroskopische Technik. Urban & Schwarzenberg, M眉nchen
    44. Ruckman, JL, Luvalle, PA, Hill, KE, Giro, MG, Davidson, JM (1994) Phenotypic stability and variation in cells of the porcine aorta: collagen and elastin production. Matrix Biol 14: pp. 135-145 CrossRef
    45. Saari, P, L盲hteenvuo, M, Honkonen, K, Manninen, H (2012) Antegrade in situ fenestration of aortic stent graft: in-vivo experiments using a pig model. Acta Radiol 53: pp. 754-758 CrossRef
    46. Sarda-Mantel, L, Alsac, JM, Boisgard, R, Hervatin, F, Montravers, F, Tavitian, B, Michel, JB, Guludec, D (2012) Comparison of 18F-fluoro-deoxy-glucose, 18F-fluoro-methyl-choline, and 18F-DPA714 for positron-emission tomography imaging of leukocyte accumulation in the aortic wall of experimental abdominal aneurysms. J Vasc Surg 56: pp. 765-773 CrossRef
    47. Schneider, CA, Rasband, WS, Eliceiri, KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: pp. 671-675 CrossRef
    48. Schriefl, AJ, Zeindlinger, G, Pierce, DM, Regitnig, P, Holzapfel, GA (2012) Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface 9: pp. 1275-1286 CrossRef
    49. Schriefl, AJ, Reinisch, AJ, Sankaran, S, Pierce, DM, Holzapfel, GA (2012) Quantitative assessment of collagen fibre orientations from two-dimensional images of soft biological tissues. J R Soc Interface 9: pp. 3081-3093 CrossRef
    50. Schriefl, AJ, Wolinski, H, Regitnig, P, Kohlwein, SD, Holzapfel, GA (2012) An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues. J R Soc Interface 10: pp. 20120760 CrossRef
    51. Schwarz, GE (1978) Estimating the dimension of a model. Ann Stat 6: pp. 461-464 14/aos/1176344136" target="_blank" title="It opens in new window">CrossRef
    52. Shadwick, RE (1999) Mechanical design in arteries. J Exp Biol 202: pp. 3305-3313
    53. Sokolis, DP, Boudoulas, H, Karayannacos, PE (2008) Segmental differences of aortic function and composition: clinical implications. Hellenic J Cardiol 49: pp. 145-154
    54. Strathe, AB, Sorensen, H, Danfaer, A (2009) A new mathematical model for combining growth and energy intake in animals: the case of the growing pig. J Theor Biol 261: pp. 165-175 CrossRef
    55. The Statsmodels Development Team (2013) Statsmodels. http://statsmodels.sourceforge.net/. Accessed 4 Feb 2014
    56. Thorne, BC, Hayenga, HN, Humphrey, JD, Peirce, SM (2011) Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent based model. Front Physiol 2: pp. 20 CrossRef
    57. Tremblay, D, Cartier, R, Mongrain, R, Leask, RL (2010) Regional dependency of the vascular smooth muscle cell contribution to the mechanical properties of the pig ascending aortic tissue. J Biomech 43: pp. 2448-2451 CrossRef
    58. Valentin, A, Holzapfel, GA (2012) Constrained mixture models as tools for testing competing hypotheses in arterial biomechanics: a brief survey. Mech Res Commun 42: pp. 126-133 CrossRef
    59. Vallet, JL, Freking, BA (2006) Changes in fetal organ weights during gestation after selection for ovulation rate and uterine capacity in swine. J Anim Sci 84: pp. 2338-2345 CrossRef
    60. Essen, GJ, Vernooij, JC, Heesterbeek, JA, Anjema, D, Merkus, D, Duncker, DJ (2011) Cardiovascular performance of adult breeding sows fails to obey allometric scaling laws. J Anim Sci 89: pp. 376-382 CrossRef
    61. Wales, DJ, Doye, JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101: pp. 5111-5116 CrossRef
    62. Weisbecker H, Pierce DM, Regitnig P, Holzapfel GA (2012) Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J Mech Behav Biomed Mater 12:93鈥?06
    63. Wilson, JS, Baek, S, Humphrey, JD (2012) Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J R Soc Interface 9: pp. 2047-2058 CrossRef
    64. Wilson, JS, Baek, S, Humphrey, JD (2013) Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms. Proc Math Phys Eng Sci 469: pp. 20120556 CrossRef
    65. Witter, K, Tonar, Z, MatejkaVM, Martinca T, Jon谩k, J, Rokosn媒, S, Pirk, J (2010) Tissue reaction to three different types of tissue glues in an experimental aorta dissection model: a quantitative approach. Histochem Cell Biol 133: pp. 241-259 CrossRef
    66. Worliczek, HL, Buggelsheim, M, Alexandrowicz, R, Witter, K, Schmidt, P, Gerner, W, Saalm眉ller, A, Joachim, A (2010) Changes in lymphocyte populations in suckling piglets during primary infections with Isospora suis. Parasite Immunol 32: pp. 232-244 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Biomedical Engineering
    Mechanics
    Biophysics and Biomedical Physics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-7940
文摘
The orientation of vascular smooth muscle cells of porcine aortae was assessed to test the widely accepted assumption that these smooth muscle cells are arranged in two helices. We used tangential histological sections of 82 samples of five anatomical segments of thoracic and abdominal porcine aortae and three age groups in animals ranging in age from 5 to 210 days. The distribution of the orientation of smooth muscle cell nuclei in five proximodistal segments of the porcine aortae was determined using an algorithm that fitted a mixture of one to five von Mises probability distributions of the data retrieved from histological micrographs. Automated tracking of the nuclei was confirmed by and consistent with manual histological analysis. The orientation of the vascular smooth muscle cells was successfully fitted using two von Mises distributions in most of the samples with different ages, wall thicknesses, and anatomical positions, which corresponds to two populations of vascular smooth muscle cells. A minor fraction of samples also required a tertiary von Mises distribution to describe the orientation of the smooth muscle cell nuclei. The distribution of vascular smooth muscle cells in five aortic segments ranging from the thoracic ascending aorta to the abdominal intrarenal aorta exhibited similar main directions but different shapes. These results are consistent with the widely used model of two muscular helices intermingling in the arterial wall. Furthermore, we calculated the central angles of symmetry and the mean value of angles between the two assumed smooth muscle directions. We also successfully approximated the orientation of the smooth muscle cells using a mixture of von Mises distributions and our open-source software named dist_mixtures. This method is openly available to researchers who are interested in mathematically assessing the orientation of cell nuclei in various tissues.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700