Fabrication of electro-microfluidic channel for single cell electroporation
详细信息    查看全文
  • 作者:Mehdi Shahini (1)
    Frans van Wijngaarden (2)
    John T. W. Yeow (1)
  • 关键词:Microfluidic channel ; Polyimide ; Laser ablation ; CHO cell ; Electroporation ; Cell lysis
  • 刊名:Biomedical Microdevices
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:15
  • 期:5
  • 页码:759-766
  • 全文大小:541KB
  • 参考文献:1. P. Abgrall, C. Lattes, V. Con茅d茅ra, X. Dollat, S. Colin, A.M. Gu茅, A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films. J. Micromech. Microeng. 16(1), 113鈥?21 (2006). doi:10.1088/0960-1317/16/1/016 CrossRef
    2. N. Bao, T.T. Le, J.-X. Cheng, C. Lu, Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells. Integr. Biol. 2, 113鈥?20 (2010). doi:10.1039/b919820b CrossRef
    3. H. Becker, C. G盲rtner, Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 390(1), 89鈥?11 (2008). doi:10.1007/s00216-007-1692-2 CrossRef
    4. L. Brown, T. Koerner, J.H. Horton, R.D. Oleschuk, Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab On A Chip 6(1), 66鈥?3 (2006). doi:10.1039/b512179e CrossRef
    5. R.B. Brown, J. Audet, Current techniques for single-cell lysis. J. Royal Soc., Interface / the Royal Society 5(Suppl 2), S131鈥? (2008). doi:10.1098/rsif.2008.0009.focus CrossRef
    6. D. Di Carlo, K.-H. Jeong, L.P. Lee, Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab On A Chip 3(4), 287鈥?1 (2003). doi:10.1039/b305162e CrossRef
    7. A.V. Govindarajan, S. Ramachandran, G.D. Vigil, P. Yager, K.F. B枚hringer, A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab On A chip 12(1), 174鈥?1 (2012). doi:10.1039/c1lc20622b CrossRef
    8. K.T. Haraldsson, J.B. Hutchison, R.P. Sebra, B.T. Good, K.S. Anseth, C.N. Bowman, 3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP). Sensors and Actuators B: Chemical 113(1), 454鈥?60 (2006). doi:10.1016/j.snb.2005.03.096 CrossRef
    9. H.W. Hou, A.A.S. Bhagat, A.G.L. Chong, P. Mao, K.S.W. Tan, J. Han, C.T. Lim, Deformability based cell margination鈥揳 simple microfluidic design for malaria-infected erythrocyte separation. Lab On A Chip 10(19), 2605鈥?3 (2010). doi:10.1039/c003873c CrossRef
    10. T. Kasahara, J. Mizuno, S. Hirata, T. Edura, S. Matsunami, C. Adachi, S. Shoji, / Microfluidic organic light emitting diode (OLED) using liquid organic semiconductors. 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS). (IEEE 2012), pp. 1069鈥?072. doi:10.1109/MEMSYS.2012.6170256
    11. J. Kim, X. Xu, Excimer laser fabrication of polymer microfluidic devices, 15(4), 255鈥?60 (2003)
    12. K. Kinosita, I. Ashikawa, N. Saita, H. Yoshimura, H. Itoh, K. Nagayama, A. Ikegami, Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys. J. 53(6), 1015鈥? (1988). doi:10.1016/S0006-3495(88)83181-3 CrossRef
    13. H. Klank, J.P. Kutter, O. Geschke, CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab On A Chip 2(4), 242鈥? (2002). doi:10.1039/b206409j CrossRef
    14. D.W. Lee, Y.-H. Cho, A continuous electrical cell lysis device using a low dc voltage for a cell transport and rupture. Sensors and Actuators B: Chemical 124(1), 84鈥?9 (2007). doi:10.1016/j.snb.2006.11.054 CrossRef
    15. P. Listwan, J.-D. P茅delacq, M. Lockard, C. Bell, T.C. Terwilliger, G.S. Waldo, The optimization of / in vitro high-throughput chemical lysis of Escherichia coli. Application to ACP domain of the polyketide synthase ppsC from Mycobacterium tuberculosis. J. Struct. Funct. Genomics 11(1), 41鈥? (2010). doi:10.1007/s10969-009-9077-8 CrossRef
    16. C.C. Liu, D.F. Cui, Design and fabrication of poly(dimethylsiloxane) electrophoresis microchip with integrated electrodes. Microsyst. Technol. 11(12), 1262鈥?266 (2005). doi:10.1007/s00542-005-0608-3 CrossRef
    17. H. Lu, M.A. Schmidt, K.F. Jensen, A microfluidic electroporation device for cell lysis. Lab On A Chip 5(1), 23鈥? (2005). doi:10.1039/b406205a CrossRef
    18. K.-Y. Lu, A.M. Wo, Y.-J. Lo, K.-C. Chen, C.-M. Lin, C.-R. Yang, Three dimensional electrode array for cell lysis via electroporation. Biosens. Bioelectron. 22(4), 568鈥?4 (2006). doi:10.1016/j.bios.2006.08.009 CrossRef
    19. P. Marmottant, S. Hilgenfeldt, Controlled vesicle deformation and lysis by single oscillating bubbles. 153鈥?56 (2003). doi:10.1038/nature01592 .
    20. G. Mernier, R. Martinez-Duarte, R. Lehal, F. Radtke, P. Renaud, Very high throughput electrical cell lysis and extraction of intracellular compounds using 3D carbon electrodes in Lab-on-a-Chip devices. Micromachines 3(3), 574鈥?81 (2012). doi:10.3390/mi3030574 CrossRef
    21. S. Metz, R. Holzer, P. Renaud, Polyimide-based microfluidic devices. Lab On A Chip 1(1), 29鈥?4 (2001). doi:10.1039/b103896f CrossRef
    22. S.R. Oh, Thick single-layer positive photoresist mold and poly(dimethylsiloxane) (PDMS) dry etching for the fabrication of a glass鈥揚DMS鈥揼lass microfluidic device. J. Micromech. Microeng. 18(11), 115025 (2008). doi:10.1088/0960-1317/18/11/115025 CrossRef
    23. S. Rajaraman, H.M. Noh, P.J. Hesketh, D.S. Gottfried, Rapid, low cost microfabrication technologies toward realization of devices for dielectrophoretic manipulation of particles and nanowires. Sensors and Actuators B: Chemical 114(1), 392鈥?01 (2006). doi:10.1016/j.snb.2005.06.022 CrossRef
    24. K.R. Rau, P.A. Quinto-Su, A.N. Hellman, V. Venugopalan, Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects. Biophys. J. 91(1), 317鈥?9 (2006). doi:10.1529/biophysj.105.079921 CrossRef
    25. M. Shahini, J.T.W. Yeow, Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip. Nanotechnology 22(32), 325705 (2011). doi:10.1088/0957-4484/22/32/325705 CrossRef
    26. B.S. Shin, J.Y. Oh, H. Sohn, Theoretical and experimental investigations into laser ablation of polyimide and copper films with 355-nm Nd:YVO4 laser. J. Mater. Process. Technol. 187鈥?88, 260鈥?63 (2007). doi:10.1016/j.jmatprotec.2006.11.106 CrossRef
    27. T. Stroh, U. Erben, A.A. K眉hl, M. Zeitz, B. Siegmund, Combined pulse electroporation鈥揳 novel strategy for highly efficient transfection of human and mouse cells. PLoS One 5(3), e9488 (2010). doi:10.1371/journal.pone.0009488 CrossRef
    28. M.W. Toepke, D.J. Beebe, PDMS absorption of small molecules and consequences in microfluidic applications. Lab On A Chip 6(12), 1484鈥? (2006). doi:10.1039/b612140c CrossRef
    29. B. Valic, M. Golzio, M. Pavlin, A. Schatz, C. Faurie, B. Gabriel, J. Teissi茅 et al., Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. European Biophysics Journal: EBJ 32(6), 519鈥?8 (2003). doi:10.1007/s00249-003-0296-9 CrossRef
    30. F.T.G. Van den Brink, E. Gool, J.-P. Frimat, J. Bomer, A. Van den Berg, S. Le Gac, Parallel single-cell analysis microfluidic platform. Electrophoresis 32(22), 3094鈥?00 (2011). doi:10.1002/elps.201100413 CrossRef
    31. H. Wang, C. Lu, Electroporation of mammalian cells in a microfluidic channel with geometric variation. Anal. Chem. 78(14), 5158鈥?4 (2006a). doi:10.1021/ac060733n CrossRef
    32. H. Wang, C. Lu, High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity. Biotechnol. Bioeng. 95(6), 1116鈥?125 (2006b). doi:10.1002/bit CrossRef
    33. H. Yin, K. Killeen, R. Brennen, D. Sobek, M. Werlich, T. Van de Goor, Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal. Chem. 77(2), 527鈥?33 (2005). doi:10.1021/ac049068d CrossRef
    34. J.-C. Yoo, G.-S. La, C.J. Kang, Y.-S. Kim, Microfabricated polydimethylsiloxane microfluidic system including micropump and microvalve for integrated biosensor. Curr. Appl. Phys. 8(6), 692鈥?95 (2008). doi:10.1016/j.cap.2007.04.050 CrossRef
  • 作者单位:Mehdi Shahini (1)
    Frans van Wijngaarden (2)
    John T. W. Yeow (1)

    1. Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada
    2. MESA + Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
  • ISSN:1572-8781
文摘
The point of this paper is to demonstrate the use of a quick and cheap fabrication method to realize a laser-ablated microfluidic channel for single cell electroporation. Traditional lithography of microchannel with electrode in MEMS applications has always been complicated. Here, we introduce a new methodology of fabricating microchannel with electrical functionalities achieved through a fast and cheap process. In the present methodology, the microchannel pattern is cut out of polyimide, bonded to two ITO-coated substrates using Teflon as an adhesion layer. ITO as conductive material enables electric field in the channel and its optical transparency allows microscopy techniques to be utilized in characterizing the behavior of the microfluidic chip. The performance of the chip was tested on irreversible single-cell scale electroporation which requires relatively high voltages. CHO cells, as mammalian cells, were passed through the microchannel to experience electric field. Cells were loaded with a fluorogenic dye, Calcein AM, and the electroporation of each was individually recorded in real-time via fluorescent microscopy. The results show promising performance of the electric microchannel in electroporation. By customizing of ITO electrodes and the design of microchannel pattern, utilization and integration of the proposed electrical microchannel in variety of other MEMS-based devices are achievable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700