Intermediate sulfidation epithermal Pb-Zn-Cu (±Ag-Au) mineralization at Cheshmeh Hafez deposit, Semnan province, Iran
详细信息    查看全文
  • 作者:Behzad Mehrabi (1)
    Majid Ghasemi Siani (1)
  • 关键词:Pb ; Cu ; Zn Mineralization ; Cheshmeh Hafez deposit ; Fluid inclusion ; Alteration ; Geochemistry ; Iran
  • 刊名:Journal of the Geological Society of India
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:80
  • 期:4
  • 页码:563-578
  • 参考文献:1. Aghanabati, A. (2003) Geology of Iran. Geol. Surv. Iran, pp.123-47.
    2. Akande, S.O., Horn, E.E. and Reutel, C. (1988) Mineralogy, fluid inclusion and genesis of the Arufu and Akwana Pb-Zn-F mineralization, middle Benue Trough, Nigeria. Jour. African Earth Sci., v.7, pp.167-80. CrossRef
    3. Alavi, M. (1991) Tectonic Map of Middle East. Geol. Surv. Iran.
    4. Albinson, T., Norman, D.I. Cole, D. and Chomiak, B. (2001) Controls on formation of low-sulfidation epithermal deposits in Mexico: Constrains from fluid inclusion and stable isotope data. Soc. Econ. Geol., Spec. Publ. no.8, pp.1-2.
    5. Arribas, A., Cunningham, C.G., Rytuba, J.J., Rye, R.O., Kelly, W.C., Podwysocki, M.H., Mckee, E.H. and Tosdal, R.M. , (1995) Geology, geochronology, fluid inclusion and isotope geochemistry of the Rodalquilar Au alunite deposits, Spain. Econ. Geol., v.90, pp.795-22. CrossRef
    6. Azizi, H. and Jahangiri, A. (2008) Cretaceous subduction-related volcanism in the Northern Sanandaj Sirjan zone, Iran. Jour. Geodyn, v.45, pp.178-90. CrossRef
    7. Barnes, H.L. (Ed.), (1979) Solubility’s of ore minerals. Geochemistry of hydrothermal ore deposits. Wiley, NY, pp.404-60.
    8. Benning, L.G. and Seward, T.M. (1996) Hydrosulfide complexing of Au in hydrothermal solutions from 150 to 400 °C and 500 to 1500 bars, Geochim. Cosmochim. Acta, v.60, pp.1849-871. CrossRef
    9. Bodnar, R.J. (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions, Geochim. Cosmochim. Acta, v.57, pp.683-84. CrossRef
    10. Collins, P.L.F. (1979) Gas hydrate in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ. Geol., v.74, pp.1435-444. CrossRef
    11. Cooke, D.R. and Simmons, S.F. (2000) Characteristics and genesis of epithermal gold deposits. Rev. Econ. Geol., v.13, pp.221-44.
    12. Downes, P.M. (2006) Yerranderie a Late Devonian Silver-Gold-Lead intermediate sulfidation epithermal district, Eastern Lachlan Orogen, New South Wales, Australia: Resource Geology, v.57, pp.1-3.
    13. Einaudi, M.T., Hedenquist, J.W. and Inan, E.E. , (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Soc. Econ. Geol. Spec. Publ., no.10, pp.285-13.
    14. Gemmell, J.B. (2004) Low and intermediate-sulfidation epithermal deposits, ARC-AMIRAP, Australia, pp.57-3.
    15. Gemmel, B. (2006) Exploration implication of hydrothermal alteration associated with epithermal Au-Ag deposits, ARCAMIRAP 588, pp.1-.
    16. Geological Survey of Iran (1995) Explanatory text of geochemical map of Moaleman (6960), Report No. 9, v.1, 33 p.
    17. Giggenbach, W.F. and Stewart, M.K. (1982) Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas: Geothermics, v.11, pp.71-0. CrossRef
    18. Grancea, L. and Bailly, L. (2002) Fluid evolution in the Baia Mare epithermal gold- poly-metalic district. Carpathians, Romania, Mineralium Deposita, pp.630-47.
    19. Haas, J.L. (1971) The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure: Econ. Geol., v.66, pp.940-46.
    20. Hassanzadeh, J., Ghazi, A.V. Axen, G. and Guest, B. (2002) Oligomiocene mafic-alkaline magmatism in north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc. Geol. Soc. Amer. Abs. with Program, v.34, no.6, p.331.
    21. Hedenquist, J.W., Arribas R., A. and Gonzalez-Urien, E. (2000) Exploration for epithermal gold deposits: Reviews in Econ. Geol., v.13, pp.245-77.
    22. Hushmandzadeh, A.R., Alavi Naini, M. and Haghipour, A.A. (1978) Evolution of geological phenomenon in Troud area: Geol. Surv. Iran, Report No.H5, 136 p (in Persian).
    23. Jimenez, F.A., Yumel, G.P. and Maglambayan, V.B. (2002) Shallow to near- surface, vein type epithermal gold mineralization at Lalab in the Sibutad gold deposit, Zambanaga Del North, Mindanao, Philippines. Jour. Asian Earth Sci., v.21, pp.119-33. CrossRef
    24. Kennedy, A.K., Grove, T.L. and Johnson, R.W. (1990) Experimental and major element constraints on the evolution of lavas from Lihir Island, Papua New Guinea. Contrib. Mineral. Petrol., v.104, pp.722-34. CrossRef
    25. Kouzmanov, K., Moritz, R., von Quadt, A.V., Chiaradia, M., Peytcheva, I., Fontignie, D., Ramboz, C. and Bogdanov, K. (2009) Late Cretaceous porphyry Cu and epithermal Cu-Au association in the Southern Panagyurishte District, Bulgaria: the paired Vlaykov Vruh and Elshitsa deposits. Mineralium Deposita, v.44, pp.611-46. CrossRef
    26. Moayyed, M. (2001) Geochemistry and petrology of volcanoplutonic bodies in Tarum area, PhD thesis (in Persian), p.256.
    27. Muller, D., Rock, N.M.S. and Groves, D.I. (1992) Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings, a pilot study. Mineral. Petrol., v.46, pp.259-89. CrossRef
    28. Olade, M.A. and Morton, R.D. (1985) Origin of lead-zinc mineralization in the Southern Benue Trough, Nigeria-fluid inclusion and trace element studies. Mineralium Deposita, v.20, pp.76-0. CrossRef
    29. Organ, Y. and Gultekin, A. (2004) Geology, mineralogy and fluid inclusions data from the Arapucan Pb-Zn-Cu-Ag deposit, Canakle, Turkey. Jour. Asian Earth Sci., v.25, pp.629-42. CrossRef
    30. Palyanaova, G. (2008) Physicochemistry modeling of the coupled behavior of gold and silver in hydrothermal processes, gold fineness, Au/Ag ratios and their possible implications. Chem. Geol., v.255, pp.399-13. CrossRef
    31. Pearce, J.A. (1982) Trace element characteristics of lavas from destructive plate boundaries. / In: R.S. Thorpe (Ed.), Wiley, New York, pp.525-48.
    32. Pearse, J.A. and Peate, D.W. (1995) Tectonic implications of the composition of the volcanic arc magmas. Annual Revi. Earth Planet. Sci., v.23, pp.251-85. CrossRef
    33. Roedder, E. (1972) Composition of fluid inclusions. USGS Prof. Paper Jj-440, p.164.
    34. Roedder, E. (1984) Fluid inclusions: Reviews in Mineralogy, v.12, 644p.
    35. Sawkins, F.J. (1990) Metal deposits in relation to plate tectonics. Springer, New York, 461p.
    36. Seward, T.M. and Barnes, H.L. (1997) Metal transport by hydrothermal ore fluids. / In: H.L. Barnes (Ed.) Geochemistry of hydrothermal ore deposits. New York, John Wiley and Sons, pp.435-86.
    37. Schmidt, G., Palme, H. Kratz, K.L. and Kurat, G. (2000). Are highly siderophile elements ZPGE, Re and Au, fractionated in the upper mantle of the earth, new results on peridotites from Zabargad, Chem. Geol., v.163, pp.167-88. CrossRef
    38. Shamanian, H., Geffrey, W., Hedenquist, J., Hatori, K. and Ghaderi, M. (2003) The Gandy and Abolhassani epithermal prospects in the Alborz magmatic arc, Semnan province, Northern Iran. Econ. Geol., v.99, pp.691-12. CrossRef
    39. Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M. (1985) A practical guides to fluid inclusion studies. Blackie Press, 239p.
    40. Sillitoe, R.H. and Hedenquist, J.W. (2003) Linkages between volcano-tectonic settings, Ore-fluid compositions and epithermal precious metal deposits. Soc. Econ. Geol., Spec. Publ., No.10, pp.315-43.
    41. Simmons, S.F., Gemmell, B. and Sawkins, F.J. (1988) The Santo Nino silver-lead-zinc vein, Fresnillo district, Zacatecas, Mexico: Part II. Physical and chemical nature of ore-forming solutions: Econ. Geol., v.83, pp.1619-641. CrossRef
    42. Simmons, S.F. (1991) Hydrothermal implications of alteration and fluid inclusion studies in the Fresnillo district, Mexico: Evidence for a brine reservoir and a descending water table during the formation of hydrothermal Ag-Pb-Zn ore bodies. Econ. Geol., v.86, pp.1579-601. CrossRef
    43. Simmons, S.F., White, N.C. and John, D.A. (2005) Geological characteristics of epithermal precious and base metal deposits, Econ. Geol. 100th Anniversary Volume, Soc. Econ. Geologists, Littleton, CO, pp.485-22.
    44. Stocklin, J. and Nabavi, M.H. (1973) 1/250000 Sheet Tectonic map of Iran, Geological Survey of Iran.
    45. Stocklin, J. (1968) Structural history and Tectonic of Iran, a review, Amer. Assoc. Petrol Geol. Bull., v.52, pp.1229-258.
    46. Wilkinson, J.J. (2001) Fluid Inclusion in hydrothermal ore deposit, Lithos 55, 229-72. CrossRef
    47. Wilson, M. (1989) Igneous petrogenesis, Unwin Hyman, 466p.
  • 作者单位:Behzad Mehrabi (1)
    Majid Ghasemi Siani (1)

    1. Department of Geology, Faculty of science, Tarbiat Moallem University, Tehran, Iran
  • ISSN:0974-6889
文摘
The Cheshmeh Hafez epithermal base metal deposit is located in Troud-Chah Shirin mountain range in the Alborz magmatic belt of northern Iran. In this area, the Eocene volcanism and associated mineralization are controlled by NW-SE trending Anjilo and Troud major faults. Geological units are composed of porphyritic andesite, andesitic basalt, dacite, rhyodacite, trachyandesite and basalt, which are typically high-K igneous rocks transitional to shoshonites. Alteration in Cheshmeh Hafez area comprise of propylilitization, sericitization, argillization and silicification. Mineralization consists of three stages. Stage 1, quartz, carbonate with early pyrite I and chalcopyrite assemblages. Stage 2, the main stage of sulfide deposition, comprises early euhedral galena I followed by galena II and sphalerite, then galena III, chalcopyrite, tetrahedrite, pyrite II, bornite and digenite. Stage 3 involves the deposition of quartz and calcite barren veins with minor pyrite. The average assays from 12 channel samples of Cheshmeh Hafez veins are 0.15 g/t Au, 3.23 g/t Ag, 4.47 wt % Pb, 2.64 wt % Cu, and 1.73 wt % Zn. Fluid inclusion homogenization temperatures (Th) in quartz fall within the range of 140°-280°C with salinities ranging from 4.7 to 18 wt. % NaCl equivalent. Comparison of Th versus ice melting (Tmice) values indicates fluid dilution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700