Physical Simulation of Hot Deformation and Microstructural Evolution of Fe-0.05C-0.13P Steel
详细信息    查看全文
  • 作者:Yashwant Mehta ; S. K. Rajput ; V. V. Dabhade…
  • 关键词:microscopy ; modeling and simulation ; optical metallography ; processing map ; steel ; thermo ; mechanical processing
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:25
  • 期:4
  • 页码:1376-1383
  • 全文大小:1,212 KB
  • 参考文献:1.B.E. Hopkins and H.R. Tipler, The Effect of Phosphorus on the Tensile and Notch-Impact Properties of High-Purity Iron and Iron-Carbon Alloys, J. Iron Steel Inst., 1958, 188, p 218-237
    2.J.W. Stewart, J.A. Charles, and E.R. Wallach, Iron-phosphorus-Carbon System, Part 1—Mechanical Properties of Low Carbon Iron-Phosphorus Alloys, Mater. Sci. Technol., 2000, 16, p 275–282CrossRef
    3.G. Sahoo and R. Balasubramaniam, Mechanical Behavior of Novel Phosphoric Irons for Concrete Reinforcement Applications, Scripta Mater., 2007, 56, p 117–120CrossRef
    4.G. Sahoo and R. Balasubramaniam, On the Corrosion Behaviour of Phosphoric irons in Simulated Concrete Pore Solution, Corros. Sci., 2008, 50, p 131–143CrossRef
    5.S.I. Kim, S.H. Choi, and Y. Lee, Influence of Phosphorous and Boron on Dynamic Recrystallization and Microstructures of Hot-Rolled Interstitial Free Steel, Mater. Sci. Eng. A, 2005, 406, p 125–133CrossRef
    6.M.F. Ashby and H.J. Frost, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, London, 1982, ISBN 978-0080293387
    7.Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15(10), p 1883–1892CrossRef
    8.Y.V.R.K. Prasad, Author’s Reply: Dynamic Materials Model: Basis and Principles, Metall. Mater. Trans. A, 1996, 27, p 235–236CrossRef
    9.S.V.S. Narayana Murty and B. Nageswara Rao, Ziegler’s Criterion on the Instability Regions in Processing Maps, Mater. Sci. Lett., 1998, 17, p 1203–1205CrossRef
    10.S.V.S. Narayana, B. Murty, and B.P. Nageswara Rao, Kashyap, Development and Validation of a Processing Map for Zirconium Alloys, Modell. Simul. Mater. Eng., 2002, 10, p 503–520CrossRef
    11.S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, on the Hot Working Characteristics of 6061Al-SiC and 6061-Al2O3 Particulate Reinforced Metal Matrix Composites, Comput. Sci. Technol., 2003, 63, p 119–135CrossRef
    12.S.V.S. Murty, B.N. Rao, and B.P. Kashyap, On the Hot Working Characteristics of 2014 Al-20 vol% Al2O3 Metal Matrix Composite, J. Mater. Process. Technol., 2005, 166, p 279–285CrossRef
    13.J.K. Chakravartty, G.K. Dey, S. Banerjee, and Y.V.R.K. Prasad, Characterization of Hot Deformation Behaviour of Zr-2.5Nb-0.5Cu Using Processing Maps, J. Nucl. Mater., 1995, 218, p 247–255CrossRef
    14.S.K. Rajput, M. Dikovits, G.P. Chaudhari, S.K. Nath, C. Poletti, F. Warchomicka, V. Pancholi, and S.K. Nath, Physical simulation of hot deformation and microstructural evolution of AISI, 1016 steel using processing maps, Mat Sci Eng A-Struct, 2013, 587, p 291–300CrossRef
    15.H. Ziegler, E. Becker, B. Budiansky, H.A. Lauwerier, and T. Koiter, An Introduction to Thermodynamics, 2nd ed., North-Holland, New York, 1983
    16.F. Montheillet, J.J. Jonas, and K.W. Neale, Modeling of Dynamic Material Behavior: A Critical Evaluation of the Dissipator Power Co-content Approach, Metall. Mater. Trans. A, 1996, 27, p 232–235CrossRef
    17.S.K. Rajput, G.P. Chaudhari, and S.K. Nath, Physical Simulation of Hot Deformation of Low-Carbon Ti-Nb Micro-alloyed Steel and Microstructural Studies, J. Mater. Eng. Perform., 2014, 23(8), p 2930–2942CrossRef
    18.C.M. Sellars and W.J. McG, Tegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138CrossRef
    19.J. Zhang, H. Di, X. Wanga, Y. Cao, J. Zhang, and T. Ma, Constitutive Analysis of the Hot Deformation Behavior of Fe–23Mn–2Al–0.2C Twinning Induced Plasticity Steel in Consideration of Strain, Mater. Design, 2013, 44, p 354–364CrossRef
    20.H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot Working Characteristics of Steels in Austenitic State, J. Mater. Process. Technol., 1995, 53, p 293–310CrossRef
    21.H.J. McQueen, Elevated-Temperature Deformation at Forming Rates of 10−2 to 102 s−1, Metall. Mater. Trans. A, 2002, 33, p 345–362CrossRef
    22.K.P. Rao, Y.K.D.V. Prasad, and E.B. Hawbolt, Hot Deformation Studies on a Low-Carbon Steel: Part 1-Flow Curves and the Constitutive Relationship, J. Mater. Process. Technol., 1996, 56, p 897–907CrossRef
    23.Y.D. Huang and L. Froyen, Important Factors to Obtain Homogeneous and Ultrafine Ferrite–Pearlite Microstructure in Low Carbon Steel, J. Mater. Process. Technol., 2002, 124, p 216–226CrossRef
    24.R.L. Goetz and S.L. Semiatin, The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10(6), p 710–717CrossRef
    25.N. Tsuji, B.Y. Matsu, and Y. Saito, Dynamic Recrystallization of Ferrite in Interstitial Free Steel, Scripta Mater., 1997, 37, p 477–484CrossRef
    26.H. Dong, D. Cai, Z. Zhao, Z. Wang, Y. Wang, Q. Yang, and B. Liao, Investigation on Static Softening Behaviors of a Low Carbon Steel Under Ferritic Rolling Condition, J. Mater. Eng. Perform., 2010, 19(2), p 151–154CrossRef
    27.J.W. Stewart, J.A. Charles, and E.R. Wallach, Iron–Phosphorus–Carbon System, Part 3 – Metallography of Low Carbon Iron–Phosphorus Alloys, Mater Sci Tech Ser, 2000, 16, p 291–303CrossRef
    28.W.D. Callister, Material Science and Engineering—An Introduction, 2nd ed., Wiley, New Delhi, 2014, p 261
    29.H. Erhart and H.J. Grabke, Site Competition in Grain Boundary Segregation of Phosphorus and Nitrogen in Iron, Scripta Metall Mater, 1981, 15, p 531–534CrossRef
    30.K.B. Gove and J.A. Charles, Met. Technol., 1974, 1, p 279–283CrossRef
    31.S.M. Abbasi and A. Momeni, Hot Working Behavior of Fe–29Ni–17Co Analyzed by Mechanical Testing and Processing Map, Mater. Sci. Eng. A, 2012, 552, p 330–335CrossRef
    32.S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, Instability Criteria for Hot Deformation of Materials, Int. Mater. Rev., 2000, 45, p 15–26CrossRef
    33.R. Vogel, On the System Iron-Phosphorus-Carbon, Arch Eisenhuttenwes., 1929, 3(5), p 369–371(in German)
    34.N.E. Dowling, Mechanical Behaviour of Materials: Engineering Methods for Deformation, Fracture and Fatigue, 3rd ed., Pearsons Prentice Hall, NJ, 2007
    35.J.M. Cabrera, A.A.L. Omar, J.J. Jonas, and J.M. Prado, Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions, Metall. Mater. Trans. A, 1997, 28, p 2233–2244CrossRef
    36.T.E. Mitchell, J.P. Hirth, and A. Misra, Apparent Activation Energy and Stress Exponent in Materials with a Peierls Stress, Acta Mater., 2002, 50, p 1087–1093CrossRef
    37.C.W. Siyasiya and W.E. Stumpf, Constitutive Constants for Hot Working of Steels: The Critical Strain for Dynamic Recrystallisation in C-Mn Steels, J. Mater. Eng. Perform., 2015, 24(1), p 468–476CrossRef
    38.R. Bobbili and V. Madhu, An Investigation into Hot Deformation Characteristics and Processing Maps of High-Strength Armor Steel, J. Mater. Eng. Perform., 2015, 24, p 4728–4735CrossRef
  • 作者单位:Yashwant Mehta (1)
    S. K. Rajput (1)
    V. V. Dabhade (2)
    G. P. Chaudhari (1)

    1. IIT – MMED, Roorkee, Uttarakhand, India
    2. Indian Institute of Technology - Metallurgy and Materials Engineering, Roorkee, Uttarakhand, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
High-phosphorus steels are important for structural applications where corrosion resistance is required and are subjected to hot deformation processing. Therefore, hot deformation behavior of Fe-0.05C-0.13P steel is studied by conducting hot compression tests in the temperature range 750-1050 °C after austenitization at 1050 °C for 10 s. The strain rates ranged from 0.001 to 10 s−1. Optical and scanning electron microscopy was performed to determine the microstructural evolution. EBSD measurement on selected samples was used to determine the microstructural changes in the ferrite phase. Processing windows were determined using modified dynamic material model in order to determine the safe hot working domains and these are correlated with the microstructural developments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700