Genotype–environment interactions affect flower and fruit herbivory and plant chemistry of Arabidopsis thaliana in a transplant experiment
详细信息    查看全文
  • 作者:A. Mosleh Arany (1) (2)
    T. J. de Jong (1)
    H. K. Kim (1)
    N. M. van Dam (3)
    Y. H. Choi (1)
    H. G. J. van Mil (1)
    R. Verpoorte (1)
    E. van der Meijden (1)
  • 关键词:Arabidopsis thaliana ; Ceutorhynchus atomus ; Ceutorhynchus contractus ; Glucosinolates ; Plant–herbivore interactions
  • 刊名:Ecological Research
  • 出版年:2009
  • 出版时间:September 2009
  • 年:2009
  • 卷:24
  • 期:5
  • 页码:1161-1171
  • 全文大小:395KB
  • 参考文献:1. Bates D, Maechler M, Dai B (2008) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-18. http://lme4.r-forge.r-project.org/
    2. Berenbaum MR (1995) Turnabout is fair play: secondary roles for primary compounds. J Chem Ecol 21:925-40. doi:10.1007/BF02033799 CrossRef
    3. Blau PA, Feeny P, Contardo L, Robson D (1978) Allylglucosinolate and herbivorous caterpillars contrast in toxicity and tolerance. Science 200:1296-298. doi:10.1126/science.200.4347.1296 CrossRef
    4. Bodnaryk RP (1994) Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry 35:301-05. doi:10.1016/S0031-9422(00)94752-6 CrossRef
    5. Bodnaryk RP, Palaniswamy P (1990) Glucosinolate levels in cotyledons of mustard, / Brassica juncea L. and rape, / B. napus L. do not determine feeding rates of flea beetle, / Phyllotreta crucifera (Goeze). J Chem Ecol 16:2735-746. doi:10.1007/BF00988082 CrossRef
    6. Bossdorf O, Schroder S, Prati D, Auge H (2004) Palatability and tolerance to simulated herbivory in native and introduced populations of / Alliaria petiolata (Brassicaceae). Am J Bot 91:856-62. doi:10.3732/ajb.91.6.856 CrossRef
    7. Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of / Arabidopsis thaliana. Phytochemistry 62:471-81. doi:10.1016/S0031-9422(02)00549-6 CrossRef
    8. Bryant JP, Chapin FS, Klein DR (1983) Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357-68. doi:10.2307/3544308 CrossRef
    9. Buchner R (1987) Approach to determination of HPLC response factors for glucosinolates. In: Wathelet JP (ed) Glucosinolates in rapeseed. Martinus Nijhoff Publishers, Dordrecht, pp 50-8
    10. Chew WFS (1988) Searching for defensive chemistry in the Cruciferae, or, Do glucosinolates always control interactions of Cruciferae with their potential herbivores and symbionts? No!. In: Spencer KC (ed) Chemical mediation of coevolution Plenum Press, New York, pp 81-12
    11. Choi HK, Choi YH, Verberne M, Lefeber AWM, Erkelens C, Verpoorte R (2004) Metabolic fingerprinting of wild-type and transgenic tobacco plants by 1H-NMR and multivariate analysis technique. Phytochemistry 65:857-64. doi:10.1016/j.phytochem.2004.01.019 CrossRef
    12. Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895-99. doi:10.1126/science.230.4728.895 CrossRef
    13. De Jong PW, Frandsen HO, Rasmussen L, Nielsen JK (2000) Genetics of resistance against defenses of the host plant / Barbarea vulgaris in a Danish flea beetle population. Proc R Soc Lond B Biol Sci 267:1663-670 CrossRef
    14. EC (1990) Oil seeds—determination of glucosinolates high performance liquid chromatography. Off J Eur Comm L 170/28. Annex VIII:03.07.27-34
    15. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi-and megavariate data analysis. Umetrics Academy, Ume?, pp 43-9
    16. Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape ( / Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347-63. doi:10.1111/j.1744-7348.1995.tb05371.x CrossRef
    17. Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Kell DB, Logan NA (2000) Detection of the dipicolic acid biomarker in / Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem 72:119-27. doi:10.1021/ac990661i CrossRef
    18. Griffiths DW, Deighton N, Birch ANE, Patrian B, Baur R, Stadler E (2001) Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochemistry 57:693-00. doi:10.1016/S0031-9422(01)00138-8 CrossRef
    19. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303-33. doi:10.1146/annurev.arplant.57.032905.105228 CrossRef
    20. Kalischuk AR, Dosdall LM (2004) Susceptibilities of seven Brassicaceae species to infestation by the cabbage seedpod weevil (Coleoptera: Curculionidae). Can Entomol 136:265-76 CrossRef
    21. Keurentjes JJB, Fu JY, de Vos CHR, Lommen A, Hall RD, Bino RD, van den Plas LHW, Jansen RC, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nat Genet 38:842-49. doi:10.1038/ng1815 CrossRef
    22. Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through / Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675-84. doi:10.1111/j.1365-3040.2004.01180.x CrossRef
    23. Kliebenstein DJ, Pedersen D, Mitchell-Olds T (2002) Comparative analysis of insect resistance QTL and QTL controlling the myrosinase/glucosinolate system in / Arabidopsis thaliana. Genetics 161:325-32
    24. Klinkhamer PGL, Meelis E, de Jong TJ, Weiner J (1992) On the analysis of size-dependent reproductive output in plants. Funct Ecol 6:308-16. doi:10.2307/2389522 CrossRef
    25. Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176-84. doi:10.1111/j.1469-8137.2007.02090.x CrossRef
    26. Larsen LM, Nielsen KJ, Ploger A, S?rensen H (1985) Responses of some beetle species to varieties of oilseed rape and to pure glucosinolates. In: S?rensen H (ed) Advances in the production and utilization of cruciferous crops, with special emphasis to oil seed rape. Dr. W. Junk Publishers, Dordrecht, pp 230-44
    27. Louda S, Rodman J (1983) Ecological patterns in the glucosinolate content of a native mustard, / Cardamine cordifolia, in the Rocky Mountains. J Chem Ecol 9:397-22. doi:10.1007/BF00988458 CrossRef
    28. Mauricio R, Rausher MD (1997) Experimental manipulation of putative selection agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435-444. doi:10.2307/2411196 CrossRef
    29. Mithen R, Raybould AF, Giamoustaris A (1995) Divergent selection for secondary metabolites between wild populations of / Brassica oleracea and its implications for plant–herbivore interactions. Heredity 75:472-84. doi:10.1038/hdy.1995.164 CrossRef
    30. Mosleh Arany A (2006) Ecology of / Arabidopsis thaliana: local adaptation and interaction with herbivores. Thesis, University of Leiden. pp 1-5
    31. Mosleh Arany A, de Jong TJ, van der Meijden E (2005) Herbivory and abiotic factors affect population dynamics of / Arabidopsis thaliana in a sand-dune area. Plant Biol 7:549-56. doi:10.1055/s-2005-865831 CrossRef
    32. Moyes CL (1998) Herbivory by the cabbage seed weevil ( / Ceutorhynchus assimilis) in natural populations of / Brassica oleracea. Acta Hortic 459:315-22
    33. Moyes CL, Raybould AF (2001) The role of spatial scale and intraspecific variation in secondary chemistry in host-plant location by / Ceutorhynchus assimilis (Coleoptera: Curculionidae). Proc R Soc Lond 268:1567-573. doi:10.1098/rspb.2001.1685 CrossRef
    34. Moyes CL, Collin HA, Britton G, Raybould AF (2000) Glucosinolates and differential herbivory in wild populations of / Brassica oleracea. J Chem Ecol 26:2625-641. doi:10.1023/A:1005549115751 CrossRef
    35. Nicholson JK, Connelly J, Lindon JC, Names E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153-61 CrossRef
    36. Nielsen JK (1978) Host plant selection of monophagous and oligophagous flea beetles feeding on Crucifers. Entomol Exp Appl 24:562-69 CrossRef
    37. Nielsen JK (1988) Crucifer-feeding Chrysomelidae: mechanisms of host plant finding and acceptance. In: Jolivet P, Petitpierre E, Hsiao TH (eds) Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht, pp 25-0
    38. Nielsen JK (1991) Plant chemicals influencing host plant specificity in / Ceutorhynchus species feeding on Cruciferae. In: Szentesi A, Jermy T (eds) Seventh international symposium of insect–plant relationships. Budapest, pp 209-14
    39. Nielsen JK, Dalgaard L, Larsen M, S?rensen H (1979a) Host plant selection of the horseradish flea beetle / Phyllotreta armoraciae (Coleoptera:Chrysomelidae): feeding responses to glucosinolates from several Crucifers. Entomol Exp Appl 25:227-39. doi:10.1007/BF00302784 CrossRef
    40. Nielsen JK, Larsen LM, S?rensen H (1979b) Host plant selection of the Horseradish flea beetle / Phyllotreta armoraciae (Coleoptera:Chrysomelidae): identification of two flavonol glycosides stimulating feeding in combination with glucosinolates. Entomol Exp Appl 26:40-8
    41. Nielsen JK, Kirkeby-Thomsen AH, Petersen K (1989) Host plant recognition in monophagous weevils. Specificity in feeding responses of / Ceutorhynchus constrictus and the variable effect of sinigrin. Entomol Exp Appl 53:157-66. doi:10.1007/BF00187997 CrossRef
    42. Nielsen JK, Hansen ML, Agerbirk N, Petersen L, Halkier B (2001) Responses of the flea beetles / Phyllotreta nemorum and / P. cruciferae to metabolically engineered / Arabidopsis thaliana with altered glucosinolate profile. Chemoecology 11:75-3. doi:10.1007/PL00001835 CrossRef
    43. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0, URL http://www.R-project.org
    44. Raubenheimer D, Simpson SJ (1999) Integrating nutrition: a geometrical approach. Entomol Exp Appl 91:67-2 CrossRef
    45. Roessingh P, Stadler E, Shoni R, Feeny P (1991) Tarsal contact chemoreceptors of the black swallowtail butterfly / Papilio polyxenes–responses to phytochemicals from host–plant and non-host–plants. Physiol Entomol 16:485-95 CrossRef
    46. Schoni R, Stadler E, Renwick JAA, Radke CD (1987) Host and non-host plant chemicals influencing the oviposition behaviour of several herbivorous insects. In: Labeyrie V, Fabers G, Lachaise D (eds) Insects–Plants. Dr. W. Junk Publishers, Dordrecht, pp 31-6
    47. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect–plant biology, 2nd edn. Oxford University Press, Oxford, pp 1-21
    48. Schultz JC (2002) Biochemical ecology: how plants fight dirty. Nature 416:267. doi:10.1038/416267a CrossRef
    49. Shah J (2005) Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43:229-60. doi:10.1146/annurev.phyto.43.040204.135951 CrossRef
    50. SPSS 15.0, SPSS Inc. Chicago, USA (2006)
    51. Sumner LW, Mendes P, Dixon A (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817-36. doi:10.1016/S0031-9422(02)00708-2 CrossRef
    52. van Dam NM, Vuister LWN, Bergshoeff C, de Vos H, van der Meijden E (1995) The ‘raison d’être-of pyrrolizidine alkaloids in / Cynoglossum officinale. J Chem Ecol 21:507-23. doi:10.1007/BF02033698 CrossRef
    53. van Dam NM, Witjes L, Svatos A (2003) Interactions between aboveground and below ground induction of glucosinolates in two wild / Brassica species. New Phytol 161:801-10. doi:10.1111/j.1469-8137.2004.00984.x
    54. van der Meijden E, van Zoelen AM, Soldaat LL (1989) Oviposition by cinnabar moth, / Tyria jacobaeae, in relation to nitrogen, sugars and alkaloids of ragwort, / Senecio jacobaea. Oikos 54:337-44. doi:10.2307/3565295 CrossRef
    55. Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of 1H-NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of / Arabidopsis thaliana. Phytochemistry 62:949-57. doi:10.1016/S0031-9422(02)00705-7 ì CrossRef
  • 作者单位:A. Mosleh Arany (1) (2)
    T. J. de Jong (1)
    H. K. Kim (1)
    N. M. van Dam (3)
    Y. H. Choi (1)
    H. G. J. van Mil (1)
    R. Verpoorte (1)
    E. van der Meijden (1)

    1. Institute of Biology Leiden, University of Leiden, P.O. Box 9516, 2300 RA, Leiden, The Netherlands
    2. Faculty of Natural Resources and Desert, Yazd University, P.O. Box 89195-741, Yazd, Iran
    3. Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 40, 6666, ZG, Heteren, The Netherlands
文摘
Large differences exist in flower and fruit herbivory between dune and inland populations of plants of Arabidopsis thaliana (Brassicaceae). Two specialist weevils Ceutorhynchus atomus and C. contractus (Curculionidae) and their larvae are responsible for this pattern in herbivory. We test, by means of a reciprocal transplant experiment, whether these differences reflect environmental influences or genetic variation in plant defense level. All plants suffered more damage after being transplanted to the dune site than after being transplanted to the inland site. Plants of inland origin suffered more flower and fruit herbivory than plants of dune origin when grown at the dune transplant site, but differences were much smaller at the inland site. Both flower damage by adult weevils and fruit damage by their larvae were subject to significant genotype?×?environment interactions. The observed pattern in herbivory is a strong indication for local adaption of plant defense to the level of herbivory by Ceutorhynchus. In order to identify the mechanism of defense, a quantitative analysis of glucosinolates was performed on the seeds with HPLC. Highly significant differences were found in glucosinolate types and total concentration. These patterns were mainly determined by the origin of the plants (dune or inland) and by a genotype?×?environment interaction. Herbivory was not significantly correlated to the concentration of glucosinolates in seeds. We therefore analyzed the total metabolic composition of seeds, using NMR spectroscopy and multivariate data analysis. Major differences in chemical composition were found in the water–methanol fractions: more glucosinolate and sucrose in the dune and more fatty acids, lipids and sinapoylmalate in the inland populations. We discuss which of these chemical factors could explain the marked differences in damage between populations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700