Modification of Molten Steelmaking Slag for Cement Application
详细信息    查看全文
  • 作者:João B. Ferreira Neto ; João O. G. Faria…
  • 关键词:Steel slag ; Cement ; Slag cooling ; Thermodynamic simulation
  • 刊名:Journal of Sustainable Metallurgy
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:2
  • 期:1
  • 页码:13-27
  • 全文大小:1,941 KB
  • 参考文献:1.Belhadj E, Diliberto C, Lecomte A (2012) Characterization and activation of basic oxygen furnace slag. Cement Concrete Comp 34:34–40. doi:10.​1016/​j.​cemconcomp.​2011.​08.​012 CrossRef
    2.Faraone N, Tonello G, Furlani E, Maschio S (2009) Steelmaking slag as aggregate for mortars: effects of particle dimension on compression strength. Chemosphere 77:1152–1156. doi:10.​1016/​j.​chemosphere.​2009.​08.​002 CrossRef
    3.Li JX, Yu QJ, Wei JX, Zhang TS (2011) Structural characteristics and hydration kinetics of modified steel slag. Cement Concrete Res 41:324–329. doi:10.​1016/​j.​cemconres.​2010.​11.​018 CrossRef
    4.Tossavainen M, Engstrom F, Yang Q, Menad N, Larsson ML, Bjorkman B (2007) Characteristic of steel slag under different cooling conditions. Waste Manage 27:1335–1344. doi:10.​1016/​j.​wasman.​2006.​08.​002 CrossRef
    5.Kriskova L, Pontikes Y, Pandelaers L, Cizer O, Jones PT, van Balen K, Blanpain B (2013) Effect of high cooling rates on the mineralogy and hydraulic properties of stainless steel slags. Metall Mater Trans B 44:1173–1184. doi:10.​1007/​s11663-013-9894-9 CrossRef
    6.Qian GR, Sun DD, Tay JH, Lai ZY (2002) Hydrothermal reaction and autoclave stability of Mg bearing RO phase in steel slag. Brit Ceram T 101(4):159–164. doi:10.​1179/​0967978022250034​15 CrossRef
    7.Mostafa NY, El-Hemaly SAS, Al-Wakeel EI, El-Korashy SA, Brown PW (2001) Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag. Cement Concrete Res 31:899–904. doi:10.​1016/​S0008-8846(01)00497-5 CrossRef
    8.Gautier M, Poirier J, Bodenan F, Franceschini G, Véron E (2013) Basic oxygen furnace (BOF) slag cooling: laboratory characteristics and prediction calculations. Int J Miner Process 123:94–101. doi:10.​1016/​j.​minpro.​2013.​05.​002 CrossRef
    9.Mills KC, Yuan L, Jones RT (2011) Estimating the physical properties of slags. J S Afr Inst Min Metall 111:649–658
    10.Ferreira Neto JB, Ribeiro TR, Lotto AA, Quarcioni VA, Chotoli FF (2014) Sistema de modificação de escória, Patent application BR 10 023505 1, pp 1–12
    11.Solvi M, Greiveldinger B, Hoffmann M, Friederici C, Michels D (2012) Granulation of metallurgical slag. WO2012/0836 A1, pp 1–15
    12.Kappes H, Michels D (2015) Dry slag granulation and energy recovery. In: Proceedings of the fourth international slag valorisation symposium. Leuven, pp 39–52
    13.Xu Z, Hwang J, Greenlund R, Huang X, Luo J, Anschuetz S (2003) Quantitative determination of metallic iron content in steel-making slag. J Miner Mater Charact Eng 2:65–70. doi:10.​4236/​jmmce.​2003.​21006
    14.Fredericci C, Zanotto ED, Ziemath EC (2000) Crystallization mechanism and properties of a blast furnace slag glass. J Non-Cryst Solids 273(1–3):64–75. doi:10.​1016/​S0022-3093(00)00145-9 CrossRef
    15.Kashiwaya Y, Nakauchi T, Pham KS, Akiyama S, Ishii K (2007) Crystallization behaviors concerned with TTT and CCT diagrams of blast furnace slag using hot thermocouple technique. ISIJ Int 47(1):44–52. doi:10.​2355/​isijinternationa​l.​47.​44 CrossRef
    16.Gan L, Zhang CX, Shangguan FQ, Li XP (2012) A differential scanning calorimetry method for construction of continuous cooling transformation diagram of blast furnace slag. Metall Mater Trans B 43:460–467. doi:10.​1007/​s11663-011-9631-1 CrossRef
    17.Jung SS, Sohn II (2013) Effect of FeO concentration on the crystallization of high-temperature CaO-Al2O3-MgO-FeO melts. J Am Ceram Soc 96(4):1309–1316. doi:10.​1111/​jace.​12134 CrossRef
    18.Shi CJ (2004) Steel slag—its production, processing, characteristics and cementitious properties. J Mater Civil Eng 16:230–236. doi:10.​1061/​(ASCE)0899-1561(2004)16:​3(230) CrossRef
    19.Ryu HG, Zhang ZT, Cho JW, Wen GH, Sridhar S (2010) Crystallization behaviors of slags through a heat flux simulator. ISIJ Int 50(8):1142–1150. doi:10.​2355/​isijinternationa​l.​50.​1142 CrossRef
    20.Associação Brasileira de Normas Técnicas (ABNT) NBR 11582 (1991) Cimento Portland—determinação da expansibilidade de Le Chatelier, pp 1–2
    21.American Society for Testing Materials (ASTM) C 151 (2005) Autoclave expansion of hydraulic cement, pp 1–4
    22.Chotoli F, Martho ACR, Quarcioni VA, Castanho MA (2013) Avaliação do perfil térmico de calorímetro de condução isotérmico para estudos de calor de hidratação de pastas de cimento Portland. Enqualab—Congresso de Qualidade em Metrologia, pp 1–6
  • 作者单位:João B. Ferreira Neto (1)
    João O. G. Faria (1)
    Catia Fredericci (1)
    Fabiano F. Chotoli (2)
    Andre N. L. Silva (1)
    Bruno B. Ferraro (1)
    Tiago R. Ribeiro (1)
    Antônio Malynowskyj (1)
    Valdecir A. Quarcioni (2)
    Andre A. Lotto (1)

    1. Laboratory of Metallurgical Processes, Institute for Technological Research (IPT), 532 Av. Prof. Almeida Prado, São Paulo, SP, Brazil
    2. Laboratory of Civil Construction Materials, Institute for Technological Research (IPT), 532 Av. Prof. Almeida Prado, São Paulo, SP, Brazil
  • 刊物类别:Metallic Materials; Sustainable Development; Industrial Chemistry/Chemical Engineering;
  • 刊物主题:Metallic Materials; Sustainable Development; Industrial Chemistry/Chemical Engineering;
  • 出版者:Springer International Publishing
  • ISSN:2199-3831
文摘
The use of metallurgical slags in cement production depends on the phases present in such slags, which are affected by changes in slag composition as well as the cooling rates adopted during solidification. In this work, slags with distinct chemical compositions were melted and subjected to different cooling conditions. Slag samples were characterized by X-ray diffraction to identify and quantify mineralogical phases and by X-ray fluorescence to determine chemical composition. The microstructure of the samples was characterized by scanning electron microscopy coupled to energy dispersive spectroscopy for phase identification. The solidification of the slags was simulated using FactSage™ for solidification path evaluation, enabling a comparison of the phases determined by thermodynamic equilibrium with those analysed in slag samples. Slags with low basicity (CaO/SiO2 <1.25) and Al2O3 content of 11 wt% exhibited a high glassy phase content depending on the cooling conditions. The phases formed in slags with higher basicity (1.4 and 3.8) were less affected by cooling rate and were different silicates, such as larnite, merwinite, monticellite, akermanite, gehlenite and melilite, whereas slags with basicity ≥1.37 exhibited RO phase (solid solution of FeO, MgO, CaO and MnO).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700