Characterization of Valuable Compounds from Winter Melon (Benincasa hispida (Thunb.) Cogn.) Seeds Using Supercritical Carbon Dioxide Extraction Combined with Pressure Swing Technique
详细信息    查看全文
  • 作者:Mandana Bimakr ; Russly Abdul Rahman ; Ali Ganjloo…
  • 关键词:Winter melon ; SCE ; PST ; Antioxidant activity ; Phenolic compounds ; HPLC ; UFA
  • 刊名:Food and Bioprocess Technology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:396-406
  • 全文大小:642 KB
  • 参考文献:Al-Khalifa, A. S. (1996). Physicochemical characteristics, fatty acid composition, and lipoxygenase activity of crude pumpkin and melon seed oils. Journal of Agricultural and Food Chemistry, 44, 964–966.CrossRef
    Al-Naqeeb, G., Ismail, M., & Al-Zubairi, A. S. (2009). Fatty acid profile, α-tocopherol content and total antioxidant activity of oil extracted from Nigella sativa seeds. International Journal of Pharmacology, 5, 244–250.CrossRef
    Bas, D., & Boyaci, I. H. (2007). Modeling and optimization I, usability of response surface methodology. Journal of Food Engineering, 78, 836–845.CrossRef
    Bhattacharjee, P., Singhal, R. S., & Tiwari, S. R. (2007). Supercritical carbon dioxide extraction of cottonseed oil. Journal of Food Engineering, 79, 892–898.CrossRef
    Bimakr, M., Rahman, R. A., Taip, F. S., Adzahan, N. M., Sarker, M. Z. I., & Ganjloo, A. (2012). Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules, 7, 11748–11762.CrossRef
    Bimakr, M., Rahman, R. A., Taip, F. S., Adzahan, N. M., Sarker, M. Z. I., & Ganjloo, A. (2013). Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition. Molecules, 18, 997–1014.CrossRef
    Cao, X., & Ito, Y. (2003). Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromatography. Journal of Chromatography A, 1021, 117–124.CrossRef
    Ensminger, M. E., Oldfield, J. E., & Heinemann, W. W. (1990). Feeds and nutrition. 2nd edition. Ensminger, Clovis
    Kazzazi, H., Rezaei, K., Ghotb-Sharif, S. J., Emam-Djomeh, Z., & Yamini, Y. (2007). Supercritical fluid extraction of flavors and fragrances from Hyssopus officinalis L. cultivated in Iran. Food Chemistry, 105, 805–811.CrossRef
    Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119, 851–858.CrossRef
    Lee, W. Y., Cho, Y. J., Oh, S. L., Park, J. H., Cha, W. S., Jung, J. Y., & Choi, Y. H. (2000). Extraction of grape seed oil by supercritical CO2 and ethanol modifier. Food Science and Biotechnology, 9, 174–178.
    Liu, G., Xu, X., Hao, Q., & Gao, Y. (2009). Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT--Food Science and Technology, 42, 1491–1495.CrossRef
    Liyana-Pathirana, C., & Shahidi, F. (2005). Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry, 93, 47–56.CrossRef
    Liza, M. S., Abdul Rahman, R., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I. S. M., & Hamid, S. (2010). Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food and Bioproducts Processing, 88, 319–326.CrossRef
    Luengthanaphol, S., Mongkholkhajornsilp, D., Douglas, S., Douglas, P. L., Pengsopa, L., & Pongamphai, S. (2004). Extraction of antioxidants from sweet Thai tamarind seed coat—preliminary experiments. Journal of Food Engineering, 63, 247–252.CrossRef
    Machmudah, S., Kawahito, Y., Sasaki, M., & Goto, M. (2007). Supercritical CO2 extraction of rosehip seed oil: fatty acids composition and process optimization. Journal of Supercritical Fluids, 41, 421–428.CrossRef
    Mandana, B., Russly, A. R., Farah, S. T., Noranizan, M. A., Zaidul, I. S., & Ali, G. (2012). Antioxidant activity of winter melon (Benincasa hispida) seeds using conventional Soxhlet extraction technique. International Food Research Journal, 19, 229–234.
    Mariod, A. A., Ahmed, Y. M., Matthäus, B., Khaleel, G., Siddig, A., Gabra, A. M., & Abdelwahab, S. I. (2009). A comparative study of the properties of six Sudanese cucurbit seeds and seed oils. Journal of the American Oil Chemists' Society, 86, 1181–1188.CrossRef
    Martinez, J. L. (2008). Supercritical fluid extraction of nutraceuticals and bioactive compounds. New York: United States of America, CRC Press.
    Mingyu, D., Mingzhang, L., Qinghong, Y., Weiming, F., Jianxiang, X., & Weiming, X. (1995). A study on Benincasa hispida contents effective for protection of kidney. Jiangsu Journal of Agricultural Sciences, 11, 46–52.
    Mirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2008). Effect of Arabic gum, xanthan gum and orange oil on flavour release from diluted orange beverage emulsion. Food Chemistry, 107, 1161–1172.
    Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New York: Wiley.
    Nyam, K. L., Tan, C. P., Lai, O. M., Long, K., & Che Man, Y. B. (2009). Physicochemical properties and bioactive compounds of selected seed oils. LWT - Food Science and Technology, 42, 1396–1403.CrossRef
    Oliveira, R., Rodrigues, M. F., & Bernardo-Gil, M. G. (2002). Characterization and supercritical carbon dioxide extraction of walnut oil. Journal of the American Oil Chemists' Society, 79, 225–230.CrossRef
    Rezaei, K., & Temelli, F. (2000). Using supercritical fluid chromatography to determine diffusion coefficients of lipids in supercritical CO2. Journal of Supercritical Fluids, 17, 35–44.CrossRef
    Rezzoug, S. A., Boutekedjiret, C., & Allaf, K. (2005). Optimization of operating conditions of rosemary essential oil extraction by a fast controlled pressure drop process using response surface methodology. Journal of Food Engineering, 71, 9–17.CrossRef
    Salto, S. (1995). Research activities on supercritical fluid science and technology in Japan—a review. Journal of Supercritical Fluids, 8, 177–204.CrossRef
    Sánchez-Vicente, Y., Cabañas, A., Renuncio, J. A. R., & Pando, C. (2009). Supercritical fluid extraction of peach (Prunus persica) seed oil using carbon dioxide and ethanol. Journal of Supercritical Fluids, 49, 167–173.CrossRef
    Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.CrossRef
    Smith, R. L., Jr., Malaluan, R. M., Setianto, W. B., Inomata, H., & Arai, K. (2003). Separation of cashew (Anacardium occidentale L.) nut shell liquid with supercritical carbon dioxide. Bioresource Technology, 88, 1–7.CrossRef
    Stévigny, C., Rolle, L., Valentini, N., & Zeppa, G. (2007). Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. Journal of the Science of Food and Agriculture, 87, 2817–2822.CrossRef
    Thana, P., Machmudah, S., Goto, M., Sasaki, M., Pavasant, P., & Shotipruk, A. (2008). Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 99, 3110–3115.CrossRef
    Triveni, R., Shamala, T. R., & Rastogi, N. K. (2001). Optimised production and utilisation of exopolysaccharide from Agrobacterium radiobacter. Process Biochemistry, 36, 787–795.CrossRef
    Valcárcel, M., & Tena, M. T. (1997). Applications of supercritical fluid extraction in food analysis. Fresenius Journal of Analytical Chemistry, 358, 561–573.CrossRef
    Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science and Technology, 17, 300–312.CrossRef
    Wang, L., Yang, B., Du, X., & Yi, C. (2008). Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chemistry, 108, 737–741.CrossRef
    Wei, Z. J., Liao, M. A., Zhang, H. X., Liu, J., & Jiang, S. H. (2009). Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresource Technology, 100, 4214–4219.CrossRef
    Wilkinson, P., Leach, C., Ahsing, E. E., Hussain, N., Miller, G. J., & Millward, D. J. (2005). Influence of α-linolenic acid and fish-oil on markers of cardiovascular risk in subjects with an atherogenic lipoprotein phenotype. Atherosclerosis, 181, 115–124.CrossRef
    Zaidul, I. S. M., Norulaini, N. A. N., Omar, A. K. M., Sato, Y., & Smith, R. L., Jr. (2007). Separation of palm kernel oil from palm kernel with supercritical carbon dioxide using pressure swing technique. Journal of Food Engineering, 81, 419–428.CrossRef
    Zaini, N. A. M., Anwar, F., Hamid, A. A., & Saari, N. (2011). Kundur [Benincasa hispida (Thunb.) Cogn.]: a potential source for valuable nutrients and functional foods. Food Research International, 44, 2368–2376.CrossRef
  • 作者单位:Mandana Bimakr (1)
    Russly Abdul Rahman (1) (2) (3)
    Ali Ganjloo (4)
    Farah Saleena Taip (3)
    Noranizan Mohd Adzahan (1)
    Md Zaidul Islam Sarker (5)

    1. Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
    2. Halal Product Research Institute, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
    3. Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
    4. Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, 45371-38791, Iran
    5. Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic Universiti Malaysia, 25200, Kuntan, Pahang, Malaysia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Chemistry
    Agriculture
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1935-5149
文摘
In this study, we describe the extraction of different valuable compounds from winter melon seeds using supercritical carbon dioxide extraction combined with pressure swing technique (SCE-PST). The effects of the extraction variables, namely pressure, holding time (HT), and continuous extraction time (CT), were optimized by response surface methodology (RSM) to maximize the crude extraction yield (CEY). The optimal conditions were at pressure of 181.35 bar, HT of 9.93 min, and CT of 50.14 min. Under these conditions, the experimental CEY was 235.70 ± 0.11 mg g−1 with a relatively strong antioxidant activity (64.42 ± 0.21 % inhibition of DPPH· radicals, 67.36 ± 0.34 % inhibition of ABTS·+ radicals) and considerable amount of phenolic compounds (42.77 ± 0.40 mg gallic acid equivalent/g extract). The high-performance liquid chromatography (HPLC) analysis revealed that the bioactive phenolic compounds increased significantly using PST (p < 0.05), where gallic acid had the highest concentration (0.688 ± 0.34 mg g−1). The extract obtained using optimal SCE-PST conditions contained more than 83.65 % total unsaturated fatty acids (UFAs) and linoleic acid accounted for 67.33 ± 0.22 % in the total extract. From the results, the SCE efficiency in terms of extract quantity and quality has been enhanced significantly applying PST. Finally, the results were compared with previous published findings using supercritical carbon dioxide, ultrasound-assisted, and Soxhlet extraction. It was found that higher CEY could be achieved using Soxhlet extraction even through the quality of SCE-PST extracts in terms of antioxidant activity and phenolic compounds was better. Keywords Winter melon SCE-PST Antioxidant activity Phenolic compounds HPLC UFA

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700