Effects of nitrogen nutrition on disease development caused by Acidovorax citrulli on melon foliage
详细信息    查看全文
  • 作者:Naama Zimerman-Lax ; Moshe Shenker ; Dafna Tamir-Ariel…
  • 关键词:Acidovorax citrulli ; Cucumis melo ; Bacterial fruit blotch ; Nutrition ; Nitrogen
  • 刊名:European Journal of Plant Pathology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:145
  • 期:1
  • 页码:125-137
  • 全文大小:493 KB
  • 参考文献:Almagro, L., Ros, L. V. G., Belchi-Navarro, S., Bru, R., Barcelo, A. R., & Pedreno, M. A. (2009). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60, 377–390.CrossRef PubMed
    Bahar, O., & Burdman, S. (2010). Bacterial fruit blotch: a threat to the cucurbit industry. Israel Journal of Plant Sciences, 58, 19–32.CrossRef
    Bahar, O., Efrat, M., Hadar, E., Dutta, B., Walcott, R. R., & Burdman, S. (2008). New subspecies-specific polymerase chain reaction-based assay for the detection of Acidovorax avenae subsp. citrulli. Plant Pathology, 57, 754–763.CrossRef
    Bahar, O., Kritzman, G., & Burdman, S. (2009). Bacterial fruit blotch of melon: screens for disease tolerance and role of seed transmission in pathogenicity. European Journal of Plant Pathology, 123, 71–83.CrossRef
    Bahar, O., Levi, N., & Burdman, S. (2011). The cucurbit pathogenic bacterium Acidovorax citrulli requires a polar flagellum for full virulence before and after host-tissue penetration. Molecular Plant-Microbe Interactions, 24, 1040–1050.CrossRef PubMed
    Bar-Tal, A., Aloni, B., Karni, L., Oserovitz, J., Hazan, A., Itach, M., et al. (2001). Nitrogen nutrition of greenhouse pepper: II. Effects of nitrogen concentration and NO3:NH4 ratio on growth, transpiration, and nutrient uptake. Hortscience, 36, 1252–1259.
    Bate, N. J., & Rothstein, S. J. (1998). C-6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. The Plant Journal, 16, 561–569.CrossRef PubMed
    Bindschedler, L. V., Dewdney, J., Blee, K. A., Stone, J. M., Asai, T., Plotnikov, J., et al. (2006). Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. The Plant Journal, 47, 851–863.CrossRef PubMed PubMedCentral
    Burdman, S., & Walcott, R. (2012). Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Molecular Plant Pathology, 13, 805–815.CrossRef PubMed
    Burdman, S., Kots, N., Kritzman, G., & Kopelowitz, J. (2005). Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Disease, 89, 1339–1347.CrossRef
    Canaday, C. H., & Wyatt, J. E. (1992). Effects of nitrogen fertilization on bacterial soft rot in two broccoli cultivars, one resistant and one susceptible to the disease. Plant Disease, 76, 989–991.
    Chalupowicz, L., Dror, O., Reuven, M., Burdman, S., & Manulis-Sasson, S. (2015). Cotyledons are the main source of secondary spread of Acidovorax citrulli in melon nurseries. Plant Pathology, 64, 528–536.CrossRef
    Chase, A. R. (1989). Effect of nitrogen and potassium fertilizer rates on severity of Xanthomonas blight of Syngonium podophyllum. Plant Disease, 73, 972–975.
    Chase, A. R. (1990). Effect of nitrogen, phosphorus and potassium rates on severity of Xanthomonas leaf spot of Schefflera. Journal of Environmental Horticulture, 8, 74–78.
    Datnoff, L. E., Elmer, W. H., & Huber, D. M. (2007). Mineral nutrition and plant disease. St. Paul: American Phytopathological Society Press.
    Daudi, A., Cheng, Z., O'Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., et al. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. The Plant Cell, 24, 275–287.CrossRef PubMed PubMedCentral
    Deng, W. L., Hamilton-Kemp, T. R., Nielsen, M. T., Andersen, R. A., Collins, G. B., & Hildebrand, D. F. (1993). Effects of 6-carbon aldehydes and alcohols on bacterial proliferation. Journal of Agricultural and Food Chemistry, 41, 506–510.CrossRef
    Duffy, B. K., & Défago, G. (1999). Macro- and microelement fertilizers influence the severity of Fusarium crown and root rot of tomato in a soilless production system. Hostscience, 34, 287–291.
    Dutta, B., Sanders, H., Langston, D. B., Booth, C., Smith, S., & Gitaitis, R. D. (2014). Long-term survival of Acidovorax citrulli in citron melon (citrullus lanatus var. citroides) seeds. Plant Pathology, 63, 1130–1137.CrossRef
    Eckshtain-Levi, N., Munitz, T., Zivanovic, M., Traore, S. M., Spröer, C., Zhao, B., et al. (2014). Comparative analysis of type III secreted effector genes reflects divergence of Acidovorax citrulli strains into three distinct lineages. Phytopathology, 104, 1152–1162.CrossRef PubMed
    Elad, Y., Yunis, H., & Volpin, H. (1993). Effect of nutrition on susceptibility of cucumber, eggplant, and pepper crops to Botrytis cinerea. Canadian Journal of Botany, 71, 602–608.CrossRef
    Elmer, W. H. (1989). Effects of chloride and nitrogen form on growth of asparagus infected by Fusarium spp. Plant Disease, 73, 736–740.
    Elmer, W. H. (2000). Comparison of plastic mulch and nitrogen form on the incidence of Verticillium wilt of eggplant. Plant Disease, 84, 1231–1234.
    Elmer, W. H., & LaMondia, J. A. (1999). Influence of ammonium sulfate and rotation crops on strawberry black root rot. Plant Disease, 83, 119–123.
    Farmer, E. E., Almeras, E., & Krishnamurthy, V. (2003). Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Current Opinion in Plant Biology, 6, 372–378.CrossRef PubMed
    Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., González, V. M., et al. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences USA, 109, 11872–11877.CrossRef
    Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.CrossRef PubMed
    Gomi, K., Yamasaki, Y., Yamamoto, H., & Akimitsu, K. (2003). Characterization of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in citrus. Journal of Plant Physiology, 160, 1219–1231.CrossRef PubMed
    Gupta, K. J., Brotman, Y., Segu, S., Zeier, T., Zeier, J., Presijn, S. T., et al. (2013). The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. Journal of Experimental Botany, 64, 553–568.CrossRef PubMed PubMedCentral
    Harrison, U. J., & Shew, H. D. (2001). Effects of soil pH and nitrogen fertility on the population dynamics of Thielaviopsis basicola. Plant and Soil, 228, 147–155.
    Hildebrand, D. F., Brown, G. C., Jackson, D. M., & Hamilton-Kemp, T. R. (1993). Effects of some leaf-emitted volatile compounds on aphid population increase. Journal of Chemical Ecology, 19, 1875–1887.CrossRef PubMed
    Holeva, M. C., Karafla, C. D., Glynos, P. E., & Alivizatos, A. S. (2009). First report of natural infection of watermelon plants and fruits by the phytopathogenic bacterium Acidovorax avenae subsp. citrulli in Greece. Phytopathologia Mediterranea, 48, 316.
    Hopkins, D. L., & Thompson, C. M. (2002). Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits. Hortscience, 37, 924–926.
    Hopkins, D. L., Thompson, C. M., & Elmstrom, G. W. (1993). Resistance of watermelon seedling and fruit to the fruit blotch bacterium. Hortscience, 28, 122–123.
    Hopkins, D. L., Cucuzza, J. D., & Watterson, J. C. (1996). Wet seed treatments for the control of bacterial fruit blotch of watermelon. Plant Disease, 80, 529–532.CrossRef
    Howe, G. A., & Schilmiller, A. L. (2002). Oxylipin metabolism in response to stress. Current Opinion in Plant Biology, 5, 230–236.CrossRef PubMed
    Huber, D. M., & Haneklaus, S. (2007). Managing nutrition to control plant disease. Landbauforschung Volkenrode, 57, 313–322.
    Huber, D. M., & Thompson, A. (2007). Nitrogen and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 31–44). St. Paul: American Phytopathological Society Press.
    Jones, J. J. B., & Case, V. W. (1990). Sampling, handling, and analyzing plant tissue samples. In R. L. Westman (Ed.), Soil testing and plant analysis (3rd ed., pp. 389–427). Madison: Soil Science Society of America, Inc.
    Kao, C. W., & Ko, W. H. (1986). The role of calcium and microorganisms in suppression of cucumber damping-off caused by Pythium splendens in Hawaiian soil. Phytopathology, 76, 221–225.CrossRef
    Kirkby, E. A. (1968). Influence of ammonium and nitrate nutrition on the cation-anion balance and nitrogen and carbohydrate metabolism of white mustard plants grown in dilute nutrient solutions. Soil Science, 105, 133–141.CrossRef
    Kishimoto, K., Matsui, K., Ozawa, R., & Takabayashi, J. (2005). Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant and Cell Physiology, 46, 1093–1102.CrossRef PubMed
    Kishimoto, K., Matsui, K., Ozawa, R., & Takabayashi, J. (2006). ETR1-, JAR1- and PAD2-dependent signaling pathways are involved in C6-aldehyde-induced defense responses of Arabidopsis. Plant Science, 171, 415–423.CrossRef PubMed
    Latin, R. C., & Hopkins, D. L. (1995). Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality. Plant Disease, 79, 761–765.CrossRef
    Lima, G. S., Assunção, I. P., & de Oliveira, M. A. (1998). Effect of treatment of melon fruits (cucumis melo L.) with different calcium sources on rot caused by Myrothecium roridum. Summa Phytopathologica, 24, 276–279.
    Liu, J., Luo, S. Z., Zhang, Q., Wang, Q. H., Chen, J. F., Guo, A. G., et al. (2012a). Tn5 transposon mutagenesis in Acidovorax citrulli for identification of genes required for pathogenicity on cucumber. Plant Pathology, 61, 364–374.CrossRef
    Liu, X., Li, F., Tang, J., Wang, W., Zhang, F., Wang, G., et al. (2012b). Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PloS One, 7, e50089.CrossRef PubMed PubMedCentral
    Mirik, M., Aysan, Y., & Sahin, F. (2006). Occurrence of bacterial fruit blotch of watermelon caused by Acidovorax avenae subsp. citrulli in the Eastern Mediterranean region of Turkey. Plant Disease, 90, 829.CrossRef
    Munitz, T. (2012). Characterization of type III-secreted effectors of Acidovorax citrulli, the causal agent of bacterial fruit blotch disease of cucurbits. Rehovot: The Hebrew University of Jerusalem, M.Sc thesis.
    Palkovics, L., Petroczy, M., Kertesz, B., Nemeth, J., Barsony, C., Mike, Z., et al. (2008). First report of bacterial fruit blotch of watermelon caused by Acidovorax avenae subsp. citrulli in Hungary. Plant Disease, 92, 834–835.CrossRef
    Penninckx, I., Thomma, B., Buchala, A., Metraux, J. P., & Broekaert, W. F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. The Plant Cell, 10, 2103–2113.CrossRef PubMed PubMedCentral
    Popović, T., & Ivanović, Ž. (2015). Occurrence of Acidovorax citrulli causing bacterial fruit blotch of watermelon in Serbia. Plant Disease, 99, 886.CrossRef
    Prabhu, A. S., Fageira, N. K., Berni, R. F., & Rodrigues, F. A. (2007). Phosphorous and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 45–55). St. Paul: American Phytopathological Society Press.
    Rahman, M., & Punja, Z. K. (2007). Calcium and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 79–93). St. Paul: American Phytopathological Society Press.
    Rane, K. K., & Latin, R. X. (1992). Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Disease, 76, 509–512.CrossRef
    Reuter, D. J., & Robinson, J. B. (1997). Plant analysis - an interpretation manual (2nd ed., ). Collingwood: CSIRO Publishing.
    Sagar, V., & Sugha, S. K. (1998). Effect of soil type and available nutrients on fusarial population and severity of pea root rot. Journal of Mycology and Plant Pathology, 28, 294–299.
    Schaad, N. W., Sowell, G., Goth, R. W., Colwell, R. R., & Webb, R. E. (1978). Pseudomonas pseudoalcaligenes subsp. citrulli subsp-nov. International Journal of Systematic Bacteriology, 28, 117–125.CrossRef
    Schaad, N. W., Postnikova, E., & Randhawa, P. (2003). Emergence of Acidovorax avenae subsp. citrulli as a crop threatening disease of watermelon and melon. In N. S. Iacobellis, A. Collmer, S. W. Hutcheson, J. Mansfield, C. E. Morris, J. Murillo, N. W. Schaad, D. E. Stead, G. Surico, & M. S. Ullrich (Eds.), Pseudomonas syringae and related pathogens (pp. 573–581). Dordrecht: Kluwer Academic Publishers.CrossRef
    Schaad, N. W., Postnikova, E., Sechler, A., Claflin, L. E., Vidaver, A. K., Jones, J. B., et al. (2008). Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli (Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov. Systematic and Applied Microbiology, 31, 434–446.CrossRef PubMed
    Shoresh, M., Yedidia, I., & Chet, I. (2005). Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, 95, 76–84.CrossRef PubMed
    Somodi, G. C., Jones, J. B., Hopkins, D. L., Stall, R. E., Kucharek, T. A., Hodge, N. C., et al. (1991). Occurrence of a bacterial watermelon fruit blotch in Florida. Plant Disease, 75, 1053–1056.CrossRef
    Tesfaye, M., Silverstein, K. A. T., Nallu, S., Wang, L., Botanga, C. J., Gomez, S. K., et al. (2013). Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes. PloS One, 8, e58992.CrossRef PubMed PubMedCentral
    Walcott, R. R., Castro, A. C., Fessehaie, A., & Ling, K. (2006). Progress towards a commercial PCR-based assay for Acidovorax avenae subsp. citrulli. Seed Science and Technology, 34, 101–116.CrossRef
    Wall, G. C., & Santos, V. M. (1988). A new bacterial disease on watermelon in the Mariana Islands. Phytopathology, 78, 1605.
    Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K., & De Ley, J. (1992). Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. International Journal of Systematic Bacteriology, 42, 107–119.CrossRef PubMed
    Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., & Chet, I. (2003). Concomitant induction of systemic resistance to Pseudomonas spingae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology, 69, 7343–7353.CrossRef PubMed PubMedCentral
    Zhao, B., Ardales, E. Y., Raymundo, A., Bai, J., Trick, H. N., Leach, J. E., et al. (2004). The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. Molecular Plant-Microbe Interactions, 17, 771–779.CrossRef PubMed
    Zvirin, T., Herman, R., Brotman, Y., Denisov, Y., Belausov, E., & Freeman, S. (2010). Differential colonization and defence responses of resistant and susceptible melon lines infected by Fusarium oxysporum race 1.2. Plant Pathology, 59, 576–585.CrossRef
  • 作者单位:Naama Zimerman-Lax (1)
    Moshe Shenker (2)
    Dafna Tamir-Ariel (1)
    Rafael Perl-Treves (3)
    Saul Burdman (1)

    1. Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
    2. Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
    3. The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900, Ramat-Gan, Israel
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Pathology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-8469
文摘
Bacterial fruit blotch (BFB) of cucurbits, caused by the seed-borne bacterium Acidovorax citrulli, is a destructive disease that threatens the melon and watermelon industries worldwide. The available means to manage the disease are very limited and there are no reliable sources of BFB resistance. Mineral nutrition has marked effects on plant diseases. To the best of our knowledge, no studies reporting effects of mineral nutrition on BFB severity have been reported to date. In the present study we assessed the influence of nitrogen nutrition on BFB severity and A. citrulli establishment in the foliage of melon plants under greenhouse conditions. Our results show that nitrogen fertilization, based on nitrate only, led to reduced disease severity and bacterial numbers in melon leaves, as compared with two combinations of nitrate and ammonium. No consistent effect of nitrogen nutrition on expression of several plant defense-associated transcripts was found, except for hydroperoxide lyase (HPL), which upon inoculation was repressed to a greater extent under the “nitrate-only” nitrogen regime compared with combined nitrate and ammonium. Reducing BFB severity and A. citrulli establishment in the plant foliage are of particular importance since establishment of the pathogen during the growing season is assumed to increase the incidence of fruit infection, leading to serious yield losses. Further research is needed to elucidate the mechanisms by which nitrogen nutrition influences BFB development, and to assess the effects of nitrogen as well as other minerals on the disease under field conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700