Brain cortex mitochondrial bioenergetics in synaptosomes and non-synaptic mitochondria during aging
详细信息    查看全文
  • 作者:Silvia Lores-Arnaiz ; Paulina Lombardi ; Analía G. Karadayian…
  • 关键词:Synaptosomes ; Non ; synaptic mitochondria ; Aging ; Cerebral cortex ; Respiration ; Depolarization
  • 刊名:Neurochemical Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:41
  • 期:1-2
  • 页码:353-363
  • 全文大小:2,350 KB
  • 参考文献:1.Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766CrossRef PubMed PubMedCentral
    2.Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145CrossRef PubMed
    3.Ly CV, Verstreken P (2006) Mitochondria at the Synapse. Neuroscientist 12:291–299CrossRef PubMed
    4.Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518CrossRef PubMed PubMedCentral
    5.Mac Askill AF, Kittler JT (2010) Control of mitochondrial transport and localization in neurons. Trends Cell Biol 20:102–112CrossRef
    6.Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887CrossRef PubMed
    7.Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419CrossRef PubMed PubMedCentral
    8.Piccioni F, Pinton P, Simeoni S, Pozzi P, Fascio U, Vismara G, Martini L, Rizzuto R, Poletti A (2002) Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB J 16:1418–1420PubMed
    9.Rintoul GL, Reynolds IJ (2009) Mitochondrial trafficking and morphology in neuronal injury. Biochim Biophys Acta 1802:143–150CrossRef PubMed
    10.Nicholls DG (2010) Stochastic aspects of transmitter release and bioenergetic dysfunction in isolated nerve terminals. Biochem Soc Trans 38:457–459CrossRef PubMed
    11.Nicholls DG (2003) Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem Res 28:1433–1441CrossRef PubMed
    12.Brown MR, Sullivan PG, Geddes JW (2006) Synaptic mitochondria are more susceptible to Ca2+ overload than non synaptic mitochondria. J Biol Chem 281:11658–11668CrossRef PubMed
    13.Sastre J, Pallardó FV, García de la Asunción J, Viña J (2000) Mitochondria, oxidative stress and aging. Free Radic Res 32:189–198CrossRef PubMed
    14.Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer´s disease. Trends Mol Med 14:45–53CrossRef PubMed PubMedCentral
    15.Lores-Arnaiz S, Bustamante J (2011) Age-related alterations in mitochondrial physiological parameters and nitric oxide production in synaptic and non-synaptic brain cortex mitochondria. Neuroscience 188:117–124CrossRef PubMed
    16.Clark JB, Nicklas WJ (1970) The metabolism of rat brain mitochondria Preparation and characterization. J Biol Chem 245:4724–4731PubMed
    17.de Lores Rodríguez, Arnaiz G, Girardi E (1977) The increase in respiratory capacity of brain subcellular fractions after the administration of the convulsant 3-mercaptopropionic acid. Life Sci 21:637–646CrossRef
    18.Lores-Arnaiz S, D’Amico G, Czerniczyniec A, Bustamante J, Boveris A (2004) Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition by chlorpromazine. Arch Biochem Biophys 430:170–177CrossRef PubMed
    19.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed
    20.Choi SW, Gerencser AA, Lee DW, Rajagopalan S, Nicholls DG, Andersen JK, Brand MD (2011) Intrinsic bioenergetic properties and stress sensitivity of dopaminergic synaptosomes. J Neurosci 31:4524–4534CrossRef PubMed PubMedCentral
    21.Estabrook R (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol 10:41–47CrossRef
    22.Petit JM, Huet O, Gallet PF, Maftah A, Ratinaud MH, Julien R (1994) Direct analysis and significance of cardiolipin transverse distribution in mitochondrial inner membranes. Eur J Biochem 220:871–879CrossRef PubMed
    23.Lores-Arnaiz S, Lores Arnaiz MR, Czerniczyniec A, Bustamante J (2010) Mitochondrial function and nitric oxide production in hippocampus and cerebral cortex of rats exposed to enriched environment. Brain Res 1319:44–53CrossRef PubMed
    24.Yonetani T (1967) Cytochrome oxidase: beef heart. Methods Enzymol 10:332–335CrossRef
    25.Klingenberg M (1999) Uncoupling protein–a useful energy dissipater. J Bioenerg Biomembr 31:419–430CrossRef PubMed
    26.Gylys KH, Fein JA, Cole GM (2000) Quantitative characterization of crude synaptosomal fraction (P-2) components by flow cytometry. J Neurosci Res 61:186–192CrossRef PubMed
    27.Hamberger A, Blomstrand C, Lehninger AL (1970) Comparative studies on mitochondria isolated from neuron-enriched and glia-enriched fractions of rabbit and beef brain. J Cell Biol 45:221–234CrossRef PubMed PubMedCentral
    28.Barazzoni R, Nair KS (2001) Changes in uncoupling protein-2 and -3 expression in aging rat skeletal muscle, liver, and heart. Am J Physiol Endocrinol Metab 280:E413–E419PubMed
    29.Stauch KL, Purnell PR, Fox HS (2014) Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function. Aging (Albany NY) 6:320–334
    30.Navarro A, Gomez C, Lopez-Cepero JM, Boveris A (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286:505–511CrossRef
    31.Petrosillo G, De Benedictis V, Ruggiero FM, Paradies G (2013) Decline in cytochrome c oxidase activity in rat
    ain mitochondria with aging Role of peroxidized cardiolipin and beneficial effectof melatonin. J Bioenerg Biomembr 45:431–440CrossRef PubMed
    32.Nicoletti VG, Tendi EA, Lalicata C, Reale S, Costa A, Villa RF, Ragusa N, Giuffrida Stella AM (1995) Changes of mitochondrial cytochrome c oxidase and FoF1 ATP synthase subunits in rat cerebral cortex during aging. Neurochem Res 20:1465–1470CrossRef PubMed
    33.Manczak M, Jung Y, Park BS, Partovi D, Reddy PH (2005) Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging. J Neurochem 92:494–504CrossRef PubMed
    34.Cuadrado-Tejedor M, Cabodevilla JF, Zamarbide M, Gómez-Isla T, Franco R, Perez-Mediavilla A (2013) Age-related mitochondrial alterations without neuronal loss in the hippocampus of a transgenic model of Alzheimer’s disease. Curr Alzheimer Res 10:390–405CrossRef PubMed
    35.Villa RF, Gorini A, Hoyer S (2006) Differentiated effect of aging of Krebs’ cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex. J Neural Transm 113:1659–1670CrossRef PubMed
    36.Villa RF, Ferrari F, Gorini A (2012) Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing. Neuroscience 227:55–66CrossRef PubMed
    37.Villa RF, Gorini A, Hoyer S (2009) Effect of ageing and ischemia on enzymatic activities linked to Krebs’ cycle, electron transfer chain, glutamate and amino acids metabolism of “free” and intra synaptic mitochondria of cerebral cortex. Neurochem Res 34:2102–2116CrossRef PubMed
    38.Naga KK, Sullivan PG, Geddes JW (2007) High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition. J Neurosci 27:7469–7475CrossRef PubMed
    39.Yarana C, Sanit J, Chattipakorn N, Chattipakorn S (2012) Synaptic and non synaptic mitochondria demonstrate a different degree of calcium-induced mitochondrial dysfunction. Life Sci 90:808–814CrossRef PubMed
  • 作者单位:Silvia Lores-Arnaiz (1)
    Paulina Lombardi (1)
    Analía G. Karadayian (1)
    Federico Orgambide (1)
    Daniela Cicerchia (1)
    Juanita Bustamante (2)

    1. Instituto de Bioquímica y Medicina Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
    2. Centro de Altos Estudios en Ciencias de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Biochemistry
    Neurology
  • 出版者:Springer Netherlands
  • ISSN:1573-6903
文摘
Alterations in mitochondrial bioenergetics have been associated with brain aging. In order to evaluate the susceptibility of brain cortex synaptosomes and non-synaptic mitochondria to aging-dependent dysfunction, male Swiss mice of 3 or 17 months old were used. Mitochondrial function was evaluated by oxygen consumption, mitochondrial membrane potential and respiratory complexes activity, together with UCP-2 protein expression. Basal respiration and respiration driving proton leak were decreased by 26 and 33 % in synaptosomes from 17-months old mice, but spare respiratory capacity was not modified by aging. Succinate supported state 3 respiratory rate was decreased by 45 % in brain cortex non-synaptic mitochondria from 17-month-old mice, as compared with young animals, but respiratory control was not affected. Synaptosomal mitochondria would be susceptible to undergo calcium-induced depolarization in 17 months-old mice, while non-synaptic mitochondria would not be affected by calcium overload. UCP-2 was significantly up-regulated in both synaptosomal and submitochondrial membranes from 17-months old mice, compared to young animals. UCP-2 upregulation seems to be a possible mechanism by which mitochondria would be resistant to suffer oxidative damage during aging.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700