A novel thermophilic endo-β-1,4-mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser-rich linker region
详细信息    查看全文
  • 作者:Haiqiang Lu (1)
    Huiying Luo (1)
    Pengjun Shi (1)
    Huoqing Huang (1)
    Kun Meng (1)
    Peilong Yang (1)
    Bin Yao (1)
  • 关键词:β ; Mannanase ; Thermophilic ; CBM ; Linker region ; Thermostability
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:98
  • 期:5
  • 页码:2155-2163
  • 全文大小:388 KB
  • 参考文献:1. Abdel-Fattah AF, Hashem AM, Ismail AMS, El-Refai MA (2009) Purification and some properties of β-mannanase from / Aspergillus oryzae NRRL 3448. J Appl Sci Res 5:2067-073
    2. Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-402 CrossRef
    3. Anbarasan S, J?nis J, Paloheimo M, Laitaoja M, Vuolanto M, Karim?ki J, Vainiotalo P, Leisola M, Turunen O (2010) Effect of glycosylation and additional domains on the thermostability of a family 10 xylanase produced by / Thermopolyspora flexuosa. Appl Environ Microbiol 76:356-60 CrossRef
    4. Bai Y, Wang J, Zhang Z, Shi P, Luo H, Huang H, Luo C, Yao B (2010) Expression of an extremely acidic β-1,4-glucanase from thermoacidophilic / Alicyclobacillus sp. A4 in / Pichia pastoris is improved by truncating the gene sequence. Microb Cell Factories 9:33 CrossRef
    5. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LD, Baker SE, Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi / Myceliophthora thermophila and / Thielavia terrestris. Nat Biotechnol 29:922-27 CrossRef
    6. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769-81 CrossRef
    7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248-54 CrossRef
    8. Bruins ME, Janssen AE, Boom RM (2001) Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol 90:155-86 CrossRef
    9. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238 CrossRef
    10. Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93:1817-830 CrossRef
    11. Chitte RR, Deshmukh SV, Kanekar PP (2011) Production, purification, and biochemical characterization of a fibrinolytic enzyme from thermophilic / Streptomyces sp. MCMB-379. Appl Biochem Biotechnol 165:1406-413 CrossRef
    12. Couturier M, Feliu J, Haon M, Navarro D, Lesage-Meessen L, Coutinho PM, Berrin JG (2011) A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity. Microb Cell Factories 10:103 CrossRef
    13. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197-16 CrossRef
    14. Ding M, Teng Y, Yin Q, Zhao J, Zhao F (2008) The N-terminal cellulose-binding domain of EGXA increases thermal stability of xylanase and changes its specific activities on different substrates. Acta Biochim Biophys Sin 40:949-54 CrossRef
    15. Do BC, Dang TT, Berrin JG, Haltrich D, To KA, Sigoillot JC, Yamabhai M (2009) Cloning, expression in / Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from / Aspergillus niger BK01. Microb Cell Factories 8:59 CrossRef
    16. Gentzsch M, Tanner W (1997) Protein- / O-glycosylation in yeast: protein-specific mannosyltransferases. Glycobiology 7:481-86 CrossRef
    17. Goto M, Tsukamoto M, Kwon I, Ekino K, Furukawa K (1999) Functional analysis of / O-linked oligosaccharides in threonine/serine-rich region of / Aspergillus glucoamylase by expression in mannosyltransferase-disruptants of yeast. Eur J Biochem 260:596-02 CrossRef
    18. Guillén D, Sánchez S, Rodríguez-Sanoja R (2006) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85:1241-249 CrossRef
    19. H?gglund P, Eriksson T, Collén A, Nerinckx W, Claeyssens M, St?lbrand H (2003) A cellulose-binding module of the / Trichoderma reesei β-mannanase Man5A increases the mannan-hydrolysis of complex substrates. J Biotechnol 101:37-8 CrossRef
    20. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637-44 CrossRef
    21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-85 CrossRef
    22. Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, Zhou Z, Yao B (2009) A xylanase with high pH stability from / Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Appl Microbiol Biotechnol 83:99-07 CrossRef
    23. Lu H, Zhang H, Shi P, Luo H, Wang Y, Yang P, Yao B (2013) A family 5 β-mannanase from the thermophilic fungus / Thielavia arenaria XZ7 with typical thermophilic enzyme features. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4656-1
    24. Luo H, Wang K, Huang H, Shi P, Yang P, Yao B (2012) Gene cloning, expression, and biochemical characterization of an alkali-tolerant β-mannanase from / Humicola insolens Y1. J Ind Microbiol Biotechnol 39:547-55 CrossRef
    25. Maijala P, Kango N, Szijarto N, Viikari L (2012) Characterization of hemicellulases from thermophilic fungi. Antonie van Leeuwenhoek 101:905-17 CrossRef
    26. Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B (2009) An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Biochimie 91:1187-196 CrossRef
    27. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426-28 CrossRef
    28. Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165-78 CrossRef
    29. Naganagouda K, Salimath PV, Mulimani VH (2009) Purification and characterization of endo-β-1,4-mannanase from / Aspergillus niger gr for application in food processing industry. J Microbiol Biotechnol 19:1184-190
    30. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785-86 CrossRef
    31. Pham TA, Berrin JG, Record E, To KA, Sigoillot JC (2010) Hydrolysis of softwood by / Aspergillus mannanase: role of a carbohydrate-binding module. J Biotechnol 148:163-70 CrossRef
    32. Puchart V, Vrsanská M, Svoboda P, Pohl J, Ogel ZB, Biely P (2004) Purification and characterization of two forms of endo-β-1,4-mannanase from a thermotolerant fungus, / Aspergillus fumigatus IMI 385708 (formerly / Thermomyces lanuginosus IMI 158749). Biochim Biophys Acta 1674:239-50 CrossRef
    33. Ravalason H, Herpo?l-Gimbert I, Record E, Bertaud F, Grisel S, deWeert S, van den Hondel CAMJJ, Asther M, Petit-Conil M, Sigoillot JC (2009) Fusion of a family 1 carbohydrate binding module of / Aspergillus niger to the / Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching. J Biotechnol 142:220-26 CrossRef
    34. Semimaru T, Goto M, Furukawa K, Hayashida S (1995) Functional analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from / Aspergillus awamori var. / kawachi. Appl Environ Microbiol 61:2885-890
    35. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219-28 CrossRef
    36. Singh S, Madlala AM, Prior BA (2003) / Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3-6 CrossRef
    37. Sunna A (2010) Modular organization and functional analysis of dissected modular β-mannanase CsMan26 from / Caldicellulosiruptor Rt8B.4. Appl Microbiol Biotechnol 86:189-00 CrossRef
    38. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Factories 6:9 CrossRef
    39. van Zyl WH, Rose SH, Trollope K, G?rgens JF (2010) Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45:1203-213 CrossRef
    40. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392-00 CrossRef
    41. Yan XX, An XM, Gui LL, Liang DC (2008) From structure to function: insights into the catalytic substrate specificity and thermostability displayed by / Bacillus subtilis mannanase BCman. J Mol Biol 379:535-44 CrossRef
    42. Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70:1-5 CrossRef
    43. Zhao J, Shi P, Huang H, Li Z, Yuan T, Yang P, Luo H, Bai Y, Yao B (2012) A novel thermoacidophilic and thermostable endo-β-1,4-glucanase from / Phialophora sp. G5: its thermostability influenced by a distinct β-sheet and the carbohydrate-binding module. Appl Microbiol Biotechnol 95:947-55 CrossRef
  • 作者单位:Haiqiang Lu (1)
    Huiying Luo (1)
    Pengjun Shi (1)
    Huoqing Huang (1)
    Kun Meng (1)
    Peilong Yang (1)
    Bin Yao (1)

    1. Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People’s Republic of China
  • ISSN:1432-0614
文摘
The gene man5XZ3 from Aspergillus nidulans XZ3 encodes a multimodular β-mannanase of glycoside hydrolase family 5 that consists of a family 1 carbohydrate-binding module (CBM1), a Thr/Ser-rich linker region, and a catalytic domain. Recombinant Man5XZ3 and its two truncated derivatives, Man5ΔCBM (removing the CBM1) and Man5ΔCL (removing both the CBM1 and linker region), were produced in Pichia pastoris and showed significant variance in the secondary structure. The three enzymes had similar biochemical properties, such as optimal pH and temperature (pH?5.0 and 80?°C) and excellent pH stability at pH?4.0-0.0. Removal of the CBM1 alone could improve the thermostability of Man5XZ3, but further removal of the linker region resulted in worse thermostability. Man5XZ3 retained greater enzyme activity in the presence of an organic solvent (acetone), two detergents (SDS and Triton X-100), and a chaotropic agent (urea) compared with Man5ΔCBM and Man5ΔCL. This study provides an excellent β-mannanase candidate favorable for various industries and primarily demonstrates the relationship between enzyme structure and function.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700