Single-step assembly of polymer-lipid hybrid nanoparticles for mitomycin C delivery
详细信息    查看全文
  • 作者:Yunfeng Yi (1)
    Yang Li (2) (3)
    Hongjie Wu (4)
    Mengmeng Jia (2)
    Xiangrui Yang (2)
    Heng Wei (2)
    Jinyan Lin (2)
    Shichao Wu (2) (3)
    Yu Huang (2)
    Zhenqing Hou (2)
    Liya Xie (5)

    1. The Affiliated Southeast Hospital of Xiamen University
    ; Xiamen University ; Zhangzhou ; 363000 ; China
    2. Department of Biomaterials
    ; College of Materials ; Xiamen University ; Xiamen ; 361005 ; China
    3. Department of Chemistry
    ; College of Chemistry and Chemical Engineering ; Xiamen University ; Xiamen ; 361005 ; China
    4. Department of Pharmacy
    ; School of Pharmaceutical Science ; Xiamen University ; Xiamen ; 361005 ; China
    5. The First Affiliated Hospital of Xiamen University
    ; Xiamen ; 361003 ; China
  • 关键词:Cancer chemoprevention ; Controlled release ; Drug delivery systems ; Phospholipids ; Self ; assembly
  • 刊名:Nanoscale Research Letters
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:2,536 KB
  • 参考文献:1. Hubbell, JA, Chilkoti, A (2012) Nanomaterials for drug delivery. Science 337: pp. 303-305 CrossRef
    2. Allen, TM, Cullis, PR (2004) Drug delivery systems: entering the mainstream. Science 303: pp. 1818-1822 CrossRef
    3. Jemal, A, Bray, F, Center, MM, Ferlay, J, Ward, E, Forman, D (2011) Global cancer statistics. CA Cancer J Clin 61: pp. 69-90 CrossRef
    4. Davis, ME, Chen, ZG, Shin, DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7: pp. 771-782 CrossRef
    5. Petros, RA, DeSimone, JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9: pp. 615-627 CrossRef
    6. Wagner, V, Dullaart, A, Bock, AK, Zweck, A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24: pp. 1211-1217 CrossRef
    7. Gao, W, Hu, C-MJ, Fang, RH, Zhang, L (2013) Liposome-like nanostructures for drug delivery. J Mater Chem B 1: pp. 6569-6585 CrossRef
    8. Zhang, L, Chan, JM, Gu, FX, Rhee, JW, Wang, AZ, Radovic-Moreno, AF, Alexis, F, Langer, R, Farokhzad, OC (2008) Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2: pp. 1696-1702 CrossRef
    9. Valencia, PM, Basto, PA, Zhang, L, Rhee, M, Langer, R, Farokhzad, OC, Karnik, R (2010) Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 4: pp. 1671-1679 CrossRef
    10. Dizaj, SM, Jafari, S, Khosroushahi, AY (2014) A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett 9: pp. 252 CrossRef
    11. De Miguel, I, Imbertie, L, Rieumajou, V, Major, M, Kravtzoff, R, Betbeder, D (2000) Proofs of the structure of lipid coated nanoparticles (SMBV) used as drug carriers. Pharm Res 17: pp. 817-824 CrossRef
    12. Hu, CM, Fang, RH, Copp, J, Luk, BT, Zhang, L (2013) A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 8: pp. 336-340 CrossRef
    13. Yang, XZ, Dou, S, Wang, YC, Long, HY, Xiong, MH, Mao, CQ, Yao, YD, Wang, J (2012) Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano 6: pp. 4955-4965 CrossRef
    14. Ling, G, Zhang, P, Zhang, W, Sun, J, Meng, X, Qin, Y, Deng, Y, He, Z (2010) Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J Control Release 148: pp. 241-248 CrossRef
    15. Shi, J, Xiao, Z, Votruba, AR, Vilos, C, Farokhzad, OC (2011) Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed 50: pp. 7027-7031 CrossRef
    16. Bradner, WT (2001) Mitomycin C: a clinical update. Cancer Treat Rev 27: pp. 35-50 CrossRef
    17. Ekins, S, Kim, RB, Leake, BF, Dantzig, AH, Schuetz, EG, Lan, L-B, Yasuda, K, Shepard, RL, Winter, MA, Schuetz, JD, Wikel, JH, Wrighton, SA (2002) Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol 61: pp. 964-973 CrossRef
    18. Maitra, R, Halpin, PA, Karlson, KH, Page, RL, Paik, DY, Leavitt, MO, Moyer, BD, Stanton, BA, Hamilton, JW (2001) Differential effects of mitomycin C and doxorubicin on P-glycoprotein expression. Biochem J 355: pp. 617-624
    19. Matsumoto, S, Yamamoto, A, Takakura, Y, Hashida, M, Tanigawa, N, Sezaki, H (1986) Cellular interaction and in vitro antitumor activity of mitomycin C-dextran conjugate. Cancer Res 46: pp. 4463-4468
    20. Jia, M, Li, Y, Yang, X, Huang, Y, Wu, H, Huang, Y, Lin, J, Li, Y, Hou, Z, Zhang, Q (2014) Development of both methotrexate and mitomycin C loaded pegylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect. ACS Appl Mater Interfaces 6: pp. 11413-11423 CrossRef
    21. Alam, MA, Al-Jenoobi, FI, Al-Mohizea, AM (2013) Commercially bioavailable proprietary technologies and their marketed products. Drug Discov Today 18: pp. 936-949 CrossRef
    22. Khan, J, Alexander, A, Ajazuddin, , Saraf, S, Saraf, S (2013) Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release 168: pp. 50-60 CrossRef
    23. Cui, F, Shi, K, Zhang, L, Tao, A, Kawashima, Y (2006) Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release 114: pp. 242-250 CrossRef
    24. Maiti, K, Mukherjee, K, Gantait, A, Saha, BP, Mukherjee, PK (2007) Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 330: pp. 155-163 CrossRef
    25. Peng, Q, Zhang, ZR, Sun, X, Zuo, J, Zhao, D, Gong, T (2010) Mechanisms of phospholipid complex loaded nanoparticles enhancing the oral bioavailability. Mol Pharmaceutics 7: pp. 565-575 CrossRef
    26. Wei, W, Shi, S-J, Liu, J, Sun, X, Ren, K, Zhao, D, Zhang, X-N, Zhang, Z-R, Gong, T (2010) Lipid nanoparticles loaded with 10-hydroxycamptothecin鈥損hospholipid complex developed for the treatment of hepatoma in clinical application. J Drug Target 18: pp. 557-566 CrossRef
    27. Yanyu, X, Yunmei, S, Zhipeng, C, Qineng, P (2006) The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm 307: pp. 77-82 CrossRef
    28. Hou, Z, Wei, H, Wang, Q, Sun, Q, Zhou, C, Zhan, C, Tang, X, Zhang, Q (2009) New method to prepare mitomycin C loaded PLA-nanoparticles with high drug entrapment efficiency. Nanoscale Res Lett 4: pp. 732-737 CrossRef
    29. Li, Y, Wu, H, Jia, M, Cui, F, Lin, J, Yang, X, Wang, Y, Dai, L, Hou, Z (2014) Therapeutic effect of folate-targeted and PEGylated phytosomes loaded with mitomycin c-soybean phosphatidyhlcholine complex. Mol Pharmaceutics 11: pp. 3017-3026 CrossRef
    30. Li, Y, Wu, H, Yang, X, Jia, M, Li, Y, Huang, Y, Lin, J, Wu, S, Hou, Z (2014) Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release. Mol Pharmaceutics 11: pp. 2915-2927 CrossRef
    31. Hou, Z, Li, Y, Huang, Y, Zhou, C, Lin, J, Wang, Y, Cui, F, Zhou, S, Jia, M, Ye, S, Zhang, Q (2013) Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery. Mol Pharmaceutics 10: pp. 90-101 CrossRef
    32. Kidd, PM (2009) Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev 14: pp. 226-246
    33. Chan, JM, Zhang, L, Yuet, KP, Liao, G, Rhee, JW, Langer, R, Farokhzad, OC (2009) PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 30: pp. 1627-1634 CrossRef
    34. Salvador-Morales, C, Zhang, L, Langer, R, Farokhzad, OC (2009) Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30: pp. 2231-2240 CrossRef
    35. Cui, F, Li, Y, Zhou, S, Jia, M, Yang, X, Yu, F, Ye, S, Hou, Z, Xie, L (2013) A comparative in vitro evaluation of self-assembled PTX-PLA and PTX-MPEG-PLA nanoparticles. Nanoscale Res Lett 8: pp. 301 CrossRef
    36. Wang, Y, Xu, H, Wang, J, Ge, L, Zhu, J (2014) Development of a thermally responsive nanogel based on chitosan-poly(N-isopropylacrylamide-co-acrylamide) for paclitaxel delivery. J Pharm Sci 103: pp. 2012-2021 CrossRef
    37. Wang, H, Zhao, Y, Wu, Y, Hu, YL, Nan, K, Nie, G, Chen, H (2011) Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 32: pp. 8281-8290 CrossRef
    38. Jin, E, Zhang, B, Sun, X, Zhou, Z, Ma, X, Sun, Q, Tang, J, Shen, Y, Van Kirk, E, Murdoch, WJ, Radosz, M (2013) Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J Am Chem Soc 135: pp. 933-940 CrossRef
    39. Alexis, F, Pridgen, E, Molnar, LK, Farokhzad, OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmaceutics 5: pp. 505-515 CrossRef
    40. Graf, N, Bielenberg, DR, Kolishetti, N, Muus, C, Banyard, J, Farokhzad, OC, Lippard, SJ (2012) 伪V尾3 integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano 6: pp. 4530-4539 CrossRef
    41. Chen, H, Chang, X, Du, D, Liu, W, Liu, J, Weng, T, Yang, Y, Xu, H, Yang, X (2006) Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release 110: pp. 296-306 CrossRef
    42. Cheetham, AG, Zhang, P, Lin, YA, Lock, LL, Cui, H (2013) Supramolecular nanostructures formed by anticancer drug assembly. J Am Chem Soc 135: pp. 2907-2910 CrossRef
    43. Shen, Y, Jin, E, Zhang, B, Murphy, CJ, Sui, M, Zhao, J, Wang, J, Tang, J, Fan, M, Van Kirk, E, Murdoch, WJ (2010) Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc 132: pp. 4259-4265 CrossRef
    44. Schwartz, HS, Sodergren, JE, Philips, FS (1963) Mitomycin C: chemical and biological studies on alkylation. Science 142: pp. 1181-1183 CrossRef
    45. Tomasz, M, Lipman, R, Chowdary, D, Pawlak, J, Verdine, GL, Nakanishi, K (1987) Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA. Science 235: pp. 1204-1208 CrossRef
    46. Han, S, Liu, Y, Nie, X, Xu, Q, Jiao, F, Li, W, Zhao, Y, Wu, Y, Chen, C (2012) Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. Small 8: pp. 1596-1606 CrossRef
    47. He, C, Hu, Y, Yin, L, Tang, C, Yin, C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31: pp. 3657-3666 CrossRef
    48. Li, Y, Xiao, W, Xiao, K, Berti, L, Luo, J, Tseng, HP, Fung, G, Lam, KS (2012) Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew Chem Int Ed 51: pp. 2864-2869 CrossRef
    49. Danhier, F, Feron, O, Preat, V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148: pp. 135-146 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
Mitomycin C is one of the most effective chemotherapeutic agents for a wide spectrum of cancers, but its clinical use is still hindered by the mitomycin C (MMC) delivery systems. In this study, the MMC-loaded polymer-lipid hybrid nanoparticles (NPs) were prepared by a single-step assembly (ACS Nano 2012, 6:4955 to 4965) of MMC-soybean phosphatidyhlcholine (SPC) complex (Mol. Pharmaceutics 2013, 10:90 to 101) and biodegradable polylactic acid (PLA) polymers for intravenous MMC delivery. The advantage of the MMC-SPC complex on the polymer-lipid hybrid NPs was that MMC-SPC was used as a structural element to offer the integrity of the hybrid NPs, served as a drug preparation to increase the effectiveness and safety and control the release of MMC, and acted as an emulsifier to facilitate and stabilize the formation. Compared to the PLA NPs/MMC, the PLA NPs/MMC-SPC showed a significant accumulation of MMC in the nuclei as the action site of MMC. The PLA NPs/MMC-SPC also exhibited a significantly higher anticancer effect compared to the PLA NPs/MMC or free MMC injection in vitro and in vivo. These results suggested that the MMC-loaded polymer-lipid hybrid NPs might be useful and efficient drug delivery systems for widening the therapeutic window of MMC and bringing the clinical use of MMC one step closer to reality.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700