Serum microRNAs levels in primary focal segmental glomerulosclerosis
详细信息    查看全文
  • 作者:Xiaoyi Cai (1)
    Zhengkun Xia (1)
    Chunni Zhang (2)
    Yang Luo (2)
    Yuanfu Gao (1)
    Zhongmin Fan (1)
    Mengyuan Liu (1)
    Ying Zhang (1)
  • 关键词:Focal segmental glomerulosclerosis ; Minimal change disease ; Nephrotic syndrome ; miRNAs
  • 刊名:Pediatric Nephrology
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:28
  • 期:9
  • 页码:1797-1801
  • 全文大小:183KB
  • 参考文献:1. Nezhad ST, Momeni B, Basiratnia M (2010) Glomerular malondialdehyde levels in patients with focal and segmental glomerulosclerosis and minimal change disease. Saudi J Kidney Dis Transpl 21:886-91
    2. Gulati S, Sengupta D, Sharma RK, Sharma A, Gupta RK, Singh U, Gupta A (2006) Steroid resistant nephrotic syndrome: role of histopathology. Indian Pediatr 43:55-0
    3. Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, Lovell H, Warady B, Gunwar S, Chonko AM, Artero M, Vincenti F (1996) Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med 334:878-83 CrossRef
    4. Czech KA, Bennett M, Devarajan P (2011) Distinct metalloproteinase excretion patterns in focal segmental glomerulosclerosis. Pediatr Nephrol 26:2179-184 CrossRef
    5. Cortez MA, Calin GA (2009) MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther 9:703-11 CrossRef
    6. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513-0518 CrossRef
    7. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28:655-61 CrossRef
    8. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166 CrossRef
    9. Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, Perera RJ (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32:e188 CrossRef
    10. Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M (2008) MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18:404-11 CrossRef
    11. Wang G, Kwan BC, Lai FM, Choi PC, Chow KM, Li PK, Szeto CC (2010) Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis. Am J Hypertens 23:78-4 CrossRef
    12. Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. Lancet 362:629-39 CrossRef
    13. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259-63
    14. Meyrier AY (2009) Treatment of focal segmental glomerulosclerosis with immunophilin modulation: when did we stop thinking about pathogenesis? Kidney Int 76:487-91 CrossRef
    15. Cameron JS, Davlson AM, GrUnfcld JP (1992) Oxford textbook of clinical nephrology. Abstracts of the Renal Association Sheffield UK:1142
    16. Wen Q, Huang Z, Zhou SF, Li XY, Luo N, Yu XQ (2010) Urinary proteins from patients with nephrotic syndrome alters the signalling proteins regulating epithelial-mesenchymal transition. Nephrology (Carlton) 15:63-4 CrossRef
    17. Kato M, Arce L, Natarajan R (2009) MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol 4:1255-266 CrossRef
    18. Saal S, Harvey SJ (2009) MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens 18:317-23 CrossRef
    19. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104:3432-437 CrossRef
    20. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R (2011) A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney Int 80:358-68 CrossRef
    21. Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, Gunn A, Nakagawa Y, Shimano H, Todorov I, Rossi JJ, Natarajan R (2009) TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11:881-89 CrossRef
    22. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R (2012) Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 23:458-69 CrossRef
    23. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593-01 CrossRef
    24. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894-07 CrossRef
    25. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910-4914 CrossRef
    26. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582-89 CrossRef
    27. Rastaldi MP, Ferrario F, Giardino L, Dell’Antonio G, Grillo C, Grillo P, Strutz F, Muller GA, Colasanti G, D’Amico G (2002) Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 62:137-46 CrossRef
    28. Frazier KS, Paredes A, Dube P, Styer E (2000) Connective tissue growth factor expression in the rat remnant kidney model and association with tubular epithelial cells undergoing transdifferentiation. Vet Pathol 37:328-35 CrossRef
    29. Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RC, Lan HY (1999) Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int 56:1455-467 CrossRef
    30. Nangaku M (2004) Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med 43:9-7 CrossRef
  • 作者单位:Xiaoyi Cai (1)
    Zhengkun Xia (1)
    Chunni Zhang (2)
    Yang Luo (2)
    Yuanfu Gao (1)
    Zhongmin Fan (1)
    Mengyuan Liu (1)
    Ying Zhang (1)

    1. Department of Pediatric Nephrology, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
    2. Department of Clinical Laboratory, Jinling Hospital, Clinical School of Medical College, Nanjing University, 210002, Nanjing, People’s Republic of China
文摘
Background MicroRNAs (miRNAs, miRs) are involved in most physiological, developmental, and pathological processes. miR-192 and miR-205 are expressed preferentially in the renal cortex and closely relevant to the renal cell biology. In the present study, we aim to measure the serum levels of miR-192 and miR-205 and their correlation with clinicopathological data in patients with primary focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD). Methods Fifty-six patients (35 male, 21 female) with idiopathic nephrotic syndrome (FSGS 30, MCD 26) and 20 healthy controls were enrolled in the study. We quantified the serum levels of miR-192 and miR-205 in patients with FSGS and MCD by RT-qPCR. Results Patients with FSGS had higher serum levels of miR-192 and miR-205 than those with MCD (324.49?±-2.74 fmol/l versus 90.19?±-7.14 fmol/l, p-lt;-.01, 2.25?±-.69 fmol/l versus 0.60?±-.51 fmol/l, p-lt;-.01, respectively). The level of miR-192 was positively correlated with the proteinuria in patients with FSGS and MCD (r--.62, p-lt;-.001, r--.84, p-lt;-.001, respectively). Similarly, the level of miR-205 was positively correlated with the proteinuria in patients with FSGS (r--.54, p--.002). In addition, the serum level of miR-192 was significantly correlated with the degree of interstitial fibrosis in patients with FSGS (r--.342, p-lt;-.05). Conclusions miR-192 and miR-205 have the potential as markers to differentiate FSGS from MCD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700