Stable and flux-conserved meshfree formulation to model shocks
详细信息    查看全文
  • 作者:Michael J. Roth ; Jiun-Shyan Chen ; Thomas R. Slawson…
  • 关键词:Meshfree ; Shock ; Gibbs phenomenon ; Riemann ; enriched stabilized conforming nodal integration ; Smoothed flux divergence
  • 刊名:Computational Mechanics
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:57
  • 期:5
  • 页码:773-792
  • 全文大小:5,258 KB
  • 参考文献:1.Leveque RJ (1992) Numerical methods for conservation laws. Birkhauser, BaselCrossRef MATH
    2.Jeffrey A, Tanuiti T (1964) Mathematics in science and engineering. In: Bellman R (ed) Non-linear wave propagation: application to physics and magnetohydrodynamics. Academic Press, New York
    3.Lax P (1957) Hyperbolic systems of conservation equations, II. Commun Pure Appl Math 10:537–566MathSciNet CrossRef MATH
    4.Oleinik OA (1957) Discontinuous solutions of nonlinear differential equations. Uspeki Mat Nauk 12:3–73 (Am. Math. Soc. Translat. Ser. 2 26:95–172)
    5.Osher S, Chakravarthy S (1984) High resolution schemes and the entropy condition. SIAM J Numer Anal 21(5):955–984MathSciNet CrossRef MATH
    6.Godunov SK (1959) Finite-difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Math Sbornik 47:271–306 (translated U.S. Joint Publ. Rel. Service, JPRS 7226)
    7.Roe PL (1980) The use of the Riemann problem in finite-difference schemes. Lecture notes in physics, vol 141. Springer, New York, pp 354–359
    8.Roe PL (1981) Approximate Riemann solvers, parameter vectors and difference schemes. J Comput Phys 43:357–372MathSciNet CrossRef MATH
    9.Harten A, Hyman JM (1983) Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J Comput Phys 50:235–269MathSciNet CrossRef MATH
    10.Osher S (1984) Riemann solvers, the entropy condition and difference approximations. SIAM J Numer Anal 21(5):955–984MathSciNet CrossRef MATH
    11.van Leer B (1984) On the relation between the upwind difference schemes of Godunov. Engquist-Osher, and Roe. SIAM J Sci Stat Comput 5:1–20CrossRef MATH
    12.VonNeumann J, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21:232–237MathSciNet CrossRef MATH
    13.Landshoff R (1955) A numerical method for treating fluid flow in the presence of shocks. Los Alamos Scientific Laboratory Report LA-1930
    14.Wilkins ML (1980) Use of artificial viscosity in multidimensional fluid dynamics calculations. J Comput Phys 36:281–303MathSciNet CrossRef MATH
    15.van Leer B (1974) Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second-order accurate scheme. J Comput Phys 14:361–370CrossRef MATH
    16.van Leer B (1979) Towards the ultimate conservative difference scheme, V: a second-order sequel to Godunov’s method. J Comput Phys 32:101–136CrossRef
    17.van Aldaba GD, van Leer B, Roberts WW (1982) A comparative study of computational methods in cosmic gas dynamics. Astron Astrophys 108:76–84MATH
    18.Roe PL (1986) Characteristic-based schemes for the Euler equations. Annu Rev Fluid Mech 18:337–365MathSciNet CrossRef MATH
    19.Harten A, Osher S (1987) Uniformly high-order accurate nonoscillatory schemes. I. SIAM J Numer Anal 24(2):279–309MathSciNet CrossRef MATH
    20.Harten A, Enquist B, Osher S, Chakravarty SR (1997) Uniformly high order accurate essentially non-oscillatory schemes, III. J Comput Phys 131:3–47CrossRef MATH
    21.Liu X, Osher S, Chant T (1994) Weighted essentially non-oscillatory schemes. J Comput Phys 115:200–212MathSciNet CrossRef MATH
    22.Christie I, Griffiths DF, Mitchell AR, Zienkiewicz OC (1976) Finite element methods for second order differential equations with significant first derivatives. Int J Numer Methods Eng 10:1389–1396MathSciNet CrossRef MATH
    23.Kelly DW, Nakazawa S, Zienkiewicz OC, Heinrich JC (1980) A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems. Int J Numer Methods Eng 15:1705–1711MathSciNet CrossRef MATH
    24.Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNet CrossRef MATH
    25.Hughes TJR, Brooks AN (1982) A theoretical framework for Petrov–Galerkin methods with discontinuous weight functions: applications to the streamline upwind procedure. In: Gallagher RH, Norrie DH, Oden JT, Zienkiewicz OC (eds) Finite elements in fluids, vol IV. Wiley, London, pp 46–65
    26.Hughes TJR, Brooks AN (1979) A multidimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD 34. ASME, New York
    27.Cockburn B, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math Comput 52(186):411–435MathSciNet MATH
    28.Qiu J, Shu CW (2005) Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J Sci Comput 26(3):907–929MathSciNet CrossRef MATH
    29.Liu WK, Chen Y (1995) Wavelet and multiple scale reproducing kernel methods. Int J Numer Methods Fluids 21:901–931MathSciNet CrossRef MATH
    30.Liu WK, Chen Y, Chang CT, Belytschko T (1996) Advances in multiple scale kernel particle methods. Comput Mech 18:73–111MathSciNet CrossRef MATH
    31.Liu WK, Hao W, Chen Y, Jun S, Gosz J (1997) Multiresolution reproducing kernel particle methods. Comput Mech 20:295–309MathSciNet CrossRef MATH
    32.Liu WK, Jun S, Sihling DT, Chen Y, Hao W (1997) Multiresolution reproducing kernel particle method for computational fluid dynamics. Int J Numer Methods Fluids 24:1391–1415MathSciNet CrossRef MATH
    33.You Y, Chen JS, Lu H (2003) Filters, reproducing kernel, and adaptive meshfree method. Comput Mech 31:316–326MATH
    34.Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106MathSciNet CrossRef MATH
    35.Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139:49–74MathSciNet CrossRef
    36.Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50:435–466CrossRef MATH
    37.Chen JS, Yoon S, Wu CT (2002) Non-linear version of stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 53:2587–2615CrossRef MATH
    38.Li S, Liu WK (1996) Moving least square reproducing kernel method, part II: Fourier analysis. Comput Methods Appl Mech Eng 139:159–194CrossRef MATH
    39.Guan C, Chi SW, Chen JS, Slawson TR, Roth MJ (2011) Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38:1033–1047CrossRef
    40.Lee SH, Kim HJ, Jun S (2000) Two scale meshfree method for the adaptivity of 3-D stress concentration problems. Comput Mech 26:376–387CrossRef MATH
    41.Jun S, Im S (2000) Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation. Comput Mech 25:257–266CrossRef MATH
    42.Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, BerlinMATH
    43.Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics, 3rd edn. Springer, BerlinCrossRef MATH
    44.Levy DW, Powell KG, van Leer B (1993) Use of a rotated Riemann solver for the two-dimensional Euler equations. J Comput Phys 106:201–214CrossRef MATH
    45.Chen JS, Wang HP (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4):441–468MathSciNet CrossRef MATH
  • 作者单位:Michael J. Roth (1)
    Jiun-Shyan Chen (2)
    Thomas R. Slawson (1)
    Kent T. Danielson (1)

    1. U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
    2. Department of Structural Engineering, University of California San Diego, San Diego, CA, USA
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Numerical and Computational Methods in Engineering
    Computational Science and Engineering
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0924
文摘
Accurate shock modeling requires that two critical issues be addressed: (1) correct representation of the essential shock physics, and (2) control of Gibbs phenomenon oscillation at the discontinuity. In this work a stable (oscillation limiting) and flux-conserved formulation under the reproducing kernel particle method is developed for shock modeling. A smoothed flux divergence is constructed under the framework of stabilized conforming nodal integration, which is locally-enriched with a Riemann solution to satisfy the entropy production constraints. This Riemann-enriched flux divergence is embedded into the reproducing kernel formulation through a velocity correction that also provides oscillation control at the shock. The correction is constrained to the shock region by an automatic shock detection algorithm that is constructed using the intrinsic spectral decomposition feature of the reproducing kernel approximation. Several numerical examples are provided to verify accuracy of the proposed formulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700