Direct meshless local Petrov–Galerkin method for elastodynamic analysis
详细信息    查看全文
  • 作者:Davoud Mirzaei ; Kourosh Hasanpour
  • 刊名:Acta Mechanica
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:227
  • 期:3
  • 页码:619-632
  • 全文大小:1,020 KB
  • 参考文献:1.Atluri S.N., Cho J.Y., Kim H.G.: Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations. Comput. Mech. 24, 334–347 (1999)CrossRef MATH
    2.Babuska I., Banerjee U., Osborn J., Zhang Q.: Effect of numerical integration on meshless methods. Comput. Methods Appl. Mech. Eng. 198, 27–40 (2009)MathSciNet CrossRef MATH
    3.Beissel S., Belytschko T.: Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)MathSciNet CrossRef MATH
    4.Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)CrossRef MATH
    5.Carpinteri A., Ferro G., Ventura G.: The partition of unity quadrature in meshless methods. Int. J. Numer. Methods Eng. 54, 987–1006 (2002)MathSciNet CrossRef MATH
    6.Chiba F., Kako T.: Stability and error analyses by energy estimate for Newmarks method. Natl. Inst. Fusion Sci. 17-18, 40, 82–91 (1999)
    7.Dai, B., Cheng, J., Zheng, B.: A moving kriging interpolation-based meshless local Petrov–Galerkin method for elastodynamic analysis. Int. J. Appl. Mech. 5, 135,001 (21 pages) (2013)
    8.Dolbow J., Belytschko T.: Numerical integration of the galerkin weak form in meshfree methods. Comput. Mech. 23, 219–230 (1999)MathSciNet CrossRef MATH
    9.Ghadiri Rad, M.H., Shahabian, F., Hosseini, S.M.: A meshless local Petrov-Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping. Acta Mech. p. In press (2014). doi:10.​1007/​s00707-014-1266-2
    10.Gu Y.T., Liu G.R.: A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids. Comput. Mech. 27, 188–198 (2001)CrossRef MATH
    11.Hoghes T., Pister K., Taylor R.: Implicit–explicit finite elements in nonlinear transient analysis. Comput. Methods Appl. Mech. Eng. 17–18, Part 1, 159–182 (1979)CrossRef MATH
    12.Idesman A., Pham D.: Finite element modeling of linear elastodynamics problems with explicit time-integration methods and linear elements with the reduced dispersion error. Comput. Methods Appl. Mech. Eng. 271, 86–108 (2014)MathSciNet CrossRef MATH
    13.Kandilas C.B.: Transient elastodynamic analysis of nonhomogeneous anisotropic plane bodies. Acta Mech. 223, 861–878 (2012)MathSciNet CrossRef MATH
    14.Lancaster P., Salkauskas K.: Surfaces generated by moving least squares methods. Math. Comput. 37, 141–158 (1981)MathSciNet CrossRef MATH
    15.Long S.Y., Liu K.Y., Hu D.A.: A new meshless method based on MLPG for elastic dynamic problems. Eng. Anal. Bound. Elem. 30, 43–48 (2006)CrossRef MATH
    16.Mazzia A., Pini G.: Product Gauss quadrature rules vs. cubature rules in the meshless local Petrov–Galerkin method. J. Complex. 26, 82–101 (2010)MathSciNet CrossRef MATH
    17.Mazzia A., Pini G., Sartoretto F.: Numerical investigation on direct MLPG for 2D and 3D potential problems. Comput. Model. Simul. Eng. 88, 183–209 (2012)MathSciNet
    18.Mazzia A., Pini G., Sartoretto F.: Meshless techniques for anisotropic diffusion. Appl. Math. Comput. 236, 54–66 (2014)MathSciNet CrossRef
    19.Mirzaei D.: Analysis of moving least squares approximation revisited. J. Comput. Appl. Math. 282, 237–250 (2015)MathSciNet CrossRef MATH
    20.Mirzaei, D.: A new low–cost meshfree method for two and three dimensional problems in elasticity. Appl. Math. Model. p. In press (2015)
    21.Mirzaei D.: Error bounds for GMLS derivatives approximations of sobolev functions. J. Comput. Appl. Math. 294, 93–101 (2016)MathSciNet CrossRef MATH
    22.Mirzaei D., Schaback R.: Direct Meshless Local Petrov–Galerkin (DMLPG) method: a generalized MLS approximation. Appl. Numer. Math. 33, 73–82 (2013)MathSciNet CrossRef MATH
    23.Mirzaei D., Schaback R.: Solving heat conduction problem by the Direct Meshless Local Petrov-Galerkin (DMLPG) method. Numer. Algorithms 65, 275–291 (2014)MathSciNet CrossRef MATH
    24.Mirzaei D., Schaback R., Dehghan M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32, 983–1000 (2012)MathSciNet CrossRef MATH
    25.Moosavi M.R., Khelil A.: Finite volume meshless local Petrov-Galerkin method in elastodynamic problems. Eng. Anal. Bound. Elem. 33, 1016–1021 (2009)CrossRef MATH
    26.Pecher R.: Efficient cubature formulae for MLPG and related methods. Int. J. Numer. Methods Eng. 65, 566–593 (2006)MathSciNet CrossRef MATH
    27.Ramezani M., Mojtabaei M., Mirzaei D.: DMLPG solution of the fractional advection–diffusion problem. Eng. Anal. Bound. Elem. 59, 36–42 (2015)MathSciNet CrossRef
    28.Sladek J., Sladek V., Van Keer R.: Meshless local boundary integral equation method for 2D elastodynamic problems. Int. J. Numer. Methods Eng. 57, 235–249 (2003)CrossRef MATH
    29.Sladek J., Sladek V., Zhang C.: Application of meshless local Petrov-Galerkin (MLPG) method to elastodynamic problems in continuously nonhomogeneous solids. CMES Comput. Model. Eng. Sci. 4, 637–648 (2000)MATH
    30.Soares D. Jr., Sladek V., Sladek J.: Modified meshless local Petrov–Galerkin formulations for elastodynamics. Int. J. Numer. Methods Eng. 90, 1508–1828 (2012)MathSciNet CrossRef MATH
    31.Taleei A., Dehghan M.: Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic. Comput. Methods Appl. Mech. Eng. 278, 479–498 (2014)MathSciNet CrossRef
    32.Wendland H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)MATH
    33.Zhang Q., Banerjee U.: Numerical integration in Galerkin meshless methods, applied to elliptic Neumann problem with non-constant coefficients. Adv. Comput. Math. 37, 453–492 (2012)MathSciNet CrossRef MATH
  • 作者单位:Davoud Mirzaei (1)
    Kourosh Hasanpour (2)

    1. Department of Mathematics, University of Isfahan, P.O.Box 81746-73441, Isfahan, Iran
    2. Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, P.O.Box 81746-73441, Isfahan, Iran
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics, Fluids and Thermodynamics
    Continuum Mechanics and Mechanics of Materials
    Structural Mechanics
    Vibration, Dynamical Systems and Control
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Wien
  • ISSN:1619-6937
文摘
This article describes a new and fast meshfree method based on a generalized moving least squares (GMLS) approximation and the local weak forms for vibration analysis in solids. In contrast to the meshless local Petrov–Galerkin method, GMLS directly approximates the local weak forms from meshless nodal values, which shifts the local integrations over the low-degree polynomial basis functions rather than over the complicated MLS shape functions. Besides, if the method is set up properly, all local integrals have the same value if all local subdomains have the same shape. These features reduce the computational costs, remarkably. The new technique is called direct meshless local Petrov–Galerkin (DMLPG) method. In DMLPG, the stiff and mass matrices are constructed by integration against polynomials. This overcomes the main drawback of meshfree methods in comparison with the finite element methods (FEM). The Newmark scheme is adapted as a time integration method, and numerical results are presented for various dynamic problems. The results are compared with the exact solutions, if available, and the FEM solutions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700