miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway
详细信息    查看全文
  • 作者:Shuzhi Zhao ; Tao Li ; Jun Li ; Qianyi Lu ; Changjing Han ; Na Wang ; Qinghua Qiu…
  • 关键词:Diabetic retinopathy ; Metabolic memory ; miR ; 23b ; 3p ; NF ; κB ; SIRT1
  • 刊名:Diabetologia
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:59
  • 期:3
  • 页码:644-654
  • 全文大小:2,327 KB
  • 参考文献:1.Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820CrossRef PubMed
    2.Reddy MA, Zhang E, Natarajan R (2015) Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58:443–455CrossRef PubMed
    3.The Diabetes Control and Complications Trial Research Group/Epidemiology of Diabetes Interventions and Complications Research Group (2002) Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287:2563–2569CrossRef
    4.Ola MS, Nawaz MI, Siddiquei MM, Al-Amro S, Abu El-Asrar AM (2012) Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complicat 26:56–64CrossRef PubMed
    5.Kowluru RA, Chan PS (2010) Metabolic memory in diabetes - from in vitro oddity to in vivo problem: role of apoptosis. Brain Res Bull 81:297–302PubMedCentral CrossRef PubMed
    6.Zhong Q, Kowluru RA (2013) Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation. Invest Ophthalmol Vis Sci 54:244–250PubMedCentral CrossRef PubMed
    7.Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22PubMedCentral CrossRef PubMed
    8.Caron AZ, He X, Mottawea W et al (2014) The SIRT1 deacetylase protects mice against the symptoms of metabolic syndrome. FASEB J 28:1306–1316CrossRef PubMed
    9.Khan SA, Sathyanarayan A, Mashek MT, Ong KT, Wollaston-Hayden EE, Mashek DG (2015) ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1alpha/PPAR-alpha signaling. Diabetes 64:418–426PubMedCentral CrossRef PubMed
    10.Gilbert RE, Thai K, Advani SL et al (2015) SIRT1 activation ameliorates hyperglycaemia by inducing a torpor-like state in an obese mouse model of type 2 diabetes. Diabetologia 58:819–827CrossRef PubMed
    11.Cai W, Ramdas M, Zhu L, Chen X, Striker GE, Vlassara H (2012) Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A 109:15888–15893PubMedCentral CrossRef PubMed
    12.Yang L, Zhang J, Yan C et al (2012) SIRT1 regulates CD40 expression induced by TNF-alpha via NF-kB pathway in endothelial cells. Cell Physiol Biochem 30:1287–1298CrossRef PubMed
    13.Wang W, Bai L, Qiao H et al (2014) The protective effect of fenofibrate against TNF-alpha-induced CD40 expression through SIRT1-mediated deacetylation of NF-kappaB in endothelial cells. Inflammation 37:177–185CrossRef PubMed
    14.Zheng Z, Chen H, Li J et al (2012) Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes 61:217–228PubMedCentral CrossRef PubMed
    15.Wu JH, Gao Y, Ren AJ et al (2012) Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Res 47:195–201CrossRef PubMed
    16.Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9:513–521CrossRef PubMed
    17.Arner P, Kulyte A (2015) MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 11:276–288CrossRef PubMed
    18.Ito T, Yagi S, Yamakuchi M (2010) MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 398:735–740CrossRef PubMed
    19.Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U (2011) Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets. FEBS J 278:1167–1174CrossRef PubMed
    20.Mortuza R, Feng B, Chakrabarti S (2014) miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia 57:1037–1046CrossRef PubMed
    21.Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97PubMedCentral CrossRef PubMed
    22.Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524CrossRef PubMed
    23.Zhou R, Hu G, Gong AY, Chen XM (2010) Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 38:3222–3232PubMedCentral CrossRef PubMed
    24.Rokavec M, Oner MG, Li H et al (2014) IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest 124:1853–1867PubMedCentral CrossRef PubMed
    25.Xiang Y, Cheng J, Wang D et al (2015) Hyperglycemia repression of miR-24 coordinately upregulates endothelial cell expression and secretion of von Willebrand factor. Blood 125:3377–3387PubMedCentral CrossRef PubMed
    26.The Diabetes Control and Complications Trial Research Group (1995) The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med 122:561–568CrossRef
    27.The Diabetes Control and Complications Trial Research Group/Epidemiology of Diabetes Interventions and Complications Research Group (2003) Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290:2159–2167CrossRef
    28.Noonan JE, Jenkins AJ, Ma JX, Keech AC, Wang JJ, Lamoureux EL (2013) An update on the molecular actions of fenofibrate and its clinical effects on diabetic retinopathy and other microvascular end points in patients with diabetes. Diabetes 62:3968–3975PubMedCentral CrossRef PubMed
    29.Aiello LP (2014) Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 37:17–23PubMedCentral CrossRef PubMed
    30.Reidy K, Kang HM, Hostetter T, Susztak K (2014) Molecular mechanisms of diabetic kidney disease. J Clin Invest 124:2333–2340PubMedCentral CrossRef PubMed
    31.Cheung CY, Ikram MK, Klein R, Wong TY (2015) The clinical implications of recent studies on the structure and function of the retinal microvasculature in diabetes. Diabetologia 58:871–885CrossRef PubMed
    32.Kowluru RA, Chakrabarti S, Chen S (2004) Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina. Acta Diabetol 41:194–199CrossRef PubMed
    33.Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCentral CrossRef PubMed
    34.Kantharidis P, Wang B, Carew RM, Lan HY (2011) Diabetes complications: the microRNA perspective. Diabetes 60:1832–1837PubMedCentral CrossRef PubMed
    35.Kovacs B, Lumayag S, Cowan C, Xu S (2011) MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 52:4402–4409CrossRef PubMed
    36.Lorenzen J, Kumarswamy R, Dangwal S, Thum T (2012) MicroRNAs in diabetes and diabetes-associated complications. RNA Biol 9:820–827CrossRef PubMed
    37.Villeneuve LM, Kato M, Reddy MA, Wang M, Lanting L, Natarajan R (2010) Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes 59:2904–2915PubMedCentral CrossRef PubMed
    38.Liu R, Zhong Y, Li X et al (2014) Role of transcription factor acetylation in diabetic kidney disease. Diabetes 63:2440–2453PubMedCentral CrossRef PubMed
    39.Yeung F, Hoberg JE, Ramsey CS et al (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380PubMedCentral CrossRef PubMed
    40.Miao F, Gonzalo IG, Lanting L, Natarajan R (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279:18091–18097CrossRef PubMed
    41.Ruderman NB, Williamson JR, Brownlee M (1992) Glucose and diabetic vascular disease. FASEB J 6:2905–2914PubMed
    42.Lee W, Lee SY, Son YJ, Yun JM (2015) Gallic acid decreases inflammatory cytokine secretion through histone acetyltransferase/histone deacetylase regulation in high glucose-induced human monocytes. J Med Food 18:793–801CrossRef PubMed
    43.Cooper ME, El-Osta A (2010) Epigenetics: mechanisms and implications for diabetic complications. Circ Res 107:1403–1413CrossRef PubMed
    44.Liu TF, Yoza BK, El Gazzar M, Vachharajani VT, McCall CE (2011) NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem 286:9856–9864PubMedCentral CrossRef PubMed
    45.Yu J, Auwerx J (2010) Protein deacetylation by SIRT1: an emerging key post-translational modification in metabolic regulation. Pharmacol Res 62:35–41PubMedCentral CrossRef PubMed
    46.Yao H, Rahman I (2012) Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem Pharmacol 84:1332–1339PubMedCentral CrossRef PubMed
    47.Xie J, Zhang X, Zhang L (2013) Negative regulation of inflammation by SIRT1. Pharmacol Res 67:60–67CrossRef PubMed
    48.Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis 33:1126–1133PubMedCentral CrossRef PubMed
    49.Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524PubMedCentral CrossRef PubMed
  • 作者单位:Shuzhi Zhao (1)
    Tao Li (1)
    Jun Li (2)
    Qianyi Lu (1)
    Changjing Han (1)
    Na Wang (1)
    Qinghua Qiu (1)
    Hui Cao (1)
    Xun Xu (1)
    Haibing Chen (3)
    Zhi Zheng (1)

    1. Department of Ophthalmology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People’s Republic of China
    2. Department of Ophthalmology, Lishui City Center Hospital, Lishui, People’s Republic of China
    3. Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Yishan Road 301, Shanghai, 200233, People’s Republic of China
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Internal Medicine
    Metabolic Diseases
    Human Physiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0428
文摘
Aims/hypothesis The mechanisms underlying the cellular metabolic memory induced by high glucose remain unclear. Here, we sought to determine the effects of microRNAs (miRNAs) on metabolic memory in diabetic retinopathy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700