Light history-dependent respiration explains the hysteresis in the daily ecosystem metabolism of seagrass
详细信息    查看全文
  • 作者:Matthew P. Adams ; Angus J. P. Ferguson ; Paul S. Maxwell…
  • 关键词:Seagrass ; Net ecosystem metabolism ; Oxygen ; Production ; Respiration ; Submerged aquatic vegetation
  • 刊名:Hydrobiologia
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:766
  • 期:1
  • 页码:75-88
  • 全文大小:1,552 KB
  • 参考文献:Anthony, K. R. N. & O. Hoegh-Guldberg, 2003. Kinetics of photoacclimation in corals. Oecologia 134: 23–31.PubMed CrossRef
    Barrón, C., N. Marbà, J. Terrados, H. Kennedy & C. M. Duarte, 2004. Community metabolism and carbon budget along a gradient of seagrass (Cymodocea nodosa) colonization. Limnology and Oceanography 49: 1642–1651.CrossRef
    Berg, P., M. H. Long, M. Huettel, J. E. Rheuban, K. J. McGlathery, R. W. Howarth, K. H. Foreman, A. E. Giblin & R. Marino, 2013. Eddy correlation measurements of oxygen fluxes in permeable sediments exposed to varying current flow and light. Limnology and Oceanography 58: 1329–1343.
    Bernard, O., 2011. Hurdles and challenges for modelling and control of microalgae for CO2- mitigation and biofuel production. Journal of Process Control 21: 1378–1389.CrossRef
    Bertelli, C. M. & R. K. F. Unsworth, 2014. Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Marine Pollution Bulletin 83: 425–429.PubMed CrossRef
    Buapet, P., L. M. Rasmusson, M. Gullström & M. Björk, 2013. Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS One 8: e83804.PubMed PubMedCentral CrossRef
    Caffrey, J. M., 2004. Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries 27: 90–101.CrossRef
    Campbell, S., C. Miller, A. Steven & A. Stephens, 2003. Photosynthetic responses of two seagrasses across a water quality gradient using chlorophyll fluorescence. Journal of Experimental Marine Biology and Ecology 291: 57–78.CrossRef
    Campbell, S. J., L. J. McKenzie & S. P. Kerville, 2006. Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. Journal of Experimental Marine Biology and Ecology 330: 455–468.CrossRef
    Champenois, W. & A. V. Borges, 2012. Seasonal and interannual variations of community metabolism rates of a Posidonia oceanica seagrass meadow. Limnology and Oceanography 57: 347–361.
    Cole, L. W. & K. J. McGlathery, 2012. Nitrogen fixation in restored eelgrass meadows. Marine Ecology Progress Series 448: 235–246.CrossRef
    Collier, C. J., S. Uthicke & M. Waycott, 2011. Thermal tolerance of two seagrass species at contrasting light levels: implications for future distribution in the Great Barrier Reef. Limnology and Oceanography 56: 2200–2210.CrossRef
    Duarte, C. M. & C. L. Chiscano, 1999. Seagrass biomass and production: a reassessment. Aquatic Botany 65: 159–174.CrossRef
    Duarte, C. M., N. Marbà, E. Gacia, J. W. Fourqurean, J. Beggins, C. Barrón & E. T. Apostolaki, 2010. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles 24: GB4032.CrossRef
    Dunton, K. H. & D. A. Tomasko, 1994. In situ photosynthesis in the seagrass Halodule wrightii in a hypersaline subtropical lagoon. Marine Ecology Progress Series 107: 281–293.CrossRef
    Erftemeijer, P. L. A. & J. Stapel, 1999. Primary production of deep-water Halophila ovalis meadows. Aquatic Botany 65: 71–82.CrossRef
    Fourqurean, J. W., C. M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M. A. Mateo, E. T. Apostolaki, G. A. Kendrick, D. Krause-Jensen, K. J. McGlathery & O. Serrano, 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505–509.CrossRef
    Gacia, E., H. Kennedy, C. M. Duarte, J. Terrados, N. Marbà, S. Papadimitriou & M. Fortes, 2005. Light-dependence of the metabolic balance of a highly productive Philippine seagrass community. Journal of Experimental Marine Biology and Ecology 316: 55–67.CrossRef
    Geertz-Hansen, O., C. Montes, C. M. Duarte, K. Sand-Jensen, N. Marbá & P. Grillas, 2011. Ecosystem metabolism in a temporary Mediterranean marsh (Doñana National Park, SW Spain). Biogeosciences 8: 963–971.CrossRef
    Glud, R. N., 2008. Oxygen dynamics of marine sediments. Marine Biology Research 4: 243–289.CrossRef
    Graf, A., A. Schlereth, M. Stitt & A. M. Smith, 2010. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proceedings of the National Academy of Sciences 107: 9458–9463.CrossRef
    Hennessey, T. L. & C. B. Field, 1991. Circadian rhythms in photosynthesis: oscillations in carbon assimilation and stomatal conductance under constant conditions. Plant Physiology 96: 831–836.PubMed PubMedCentral CrossRef
    Hotchkiss, E. R. & R. O. Hall, 2014. High rates of daytime respiration in three streams: use of δ18O2 and O2 to model diel ecosystem metabolism. Limnology and Oceanography 59: 798–810.CrossRef
    Hume, A. C., P. Berg & K. J. McGlathery, 2011. Dissolved oxygen fluxes and ecosystem metabolism in an eelgrass (Zostera marina) meadow measured with the eddy correlation technique. Limnology and Oceanography 56: 86–96.CrossRef
    Jassby, A. D. & T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography 21: 540–547.CrossRef
    Kaldy, J., 2012. Influence of light, temperature and salinity on dissolved organic carbon exudation rates in Zostera marina L. Aquatic Ecosystems 8: 19.CrossRef
    Kaldy, J. E., C. P. Onuf, P. M. Eldridge & L. A. Cifuentes, 2002. Carbon budget for a subtropical seagrass dominated coastal lagoon: how important are seagrasses to total ecosystem net primary production? Estuaries 25: 528–539.CrossRef
    Lee, K.-S., S. R. Park & Y. K. Kim, 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350: 144–175.CrossRef
    Lindeboom, H. J. & A. J. J. Sandee, 1989. Production and consumption of tropical seagrass fields in eastern Indonesia measured with bell jars and microelectrodes. Netherlands Journal of Sea Research 23: 181–190.CrossRef
    Longstaff, B. J. & W. C. Dennison, 1999. Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquatic Botany 65: 105–121.CrossRef
    Marra, J., 1978. Effect of short-term variations in light intensity on photosynthesis of a marine phytoplankter: a laboratory simulation study. Marine Biology 46: 191–202.CrossRef
    Martin, S., J. Clavier, J.-M. Guarini, L. Chauvaud, C. Hily, J. Grall, G. Thouzeau, F. Jean & J. Richard, 2005. Comparison of Zostera marina and maerl community metabolism. Aquatic Botany 83: 161–174.CrossRef
    Marsh, J. A., W. C. Dennison & R. S. Alberte, 1986. Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). Journal of Experimental Marine Biology and Ecology 101: 257–267.CrossRef
    Mass, T., A. Genin, U. Shavit, M. Grinstein & D. Tchernov, 2010. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Sciences 107: 2527–2531.CrossRef
    Maxwell, P. S., K. A. Pitt, D. D. Burfeind, A. D. Olds, R. C. Babcock & R. M. Connolly, 2014. Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding. Journal of Ecology 102: 54–64.CrossRef
    McWatters, H. G. & P. F. Devlin, 2011. Timing in plants—A rhythmic arrangement. FEBS Letters 585: 1474–1484.PubMed CrossRef
    Miller, H. L., C. Meile & A. B. Burd, 2007. A novel 2D model of internal O2 dynamics and H2S intrusion in seagrasses. Ecological Modelling 205: 365–380.CrossRef
    Moncreiff, C. A., M. J. Sullivan & A. E. Daehnick, 1992. Primary production dynamics in seagrass beds of Mississippi Sound: the contributions of seagrass, epiphytic algae, sand microflora, and phytoplankton. Marine Ecology Progress Series 87: 161–171.CrossRef
    Moriarty, D. J. W., R. L. Iverson & P. C. Pollard, 1986. Exudation of organic carbon by the seagrass Halodule wrightii Aschers. and its effect on bacterial growth in the sediment. Journal of Experimental Marine Biology and Ecology 96: 115–126.
    Murray, L. & R. L. Wetzel, 1987. Oxygen production and consumption associated with the major autotrophic components in two temperate seagrass communities. Marine Ecology Progress Series 38: 231–239.CrossRef
    O’Brien, K. R., M. A. Burford & J. D. Brookes, 2009. Effects of light history on primary productivity in a phytoplankton community dominated by the toxic cyanobacterium Cylindrospermopsis raciborskii. Freshwater Biology 54: 272–282.CrossRef
    Olivé, I., J. Silva, M. M. Costa & R. Santos, 2015. Estimating seagrass community metabolism using benthic chambers: the effect of incubation time. Estuaries and Coasts. doi:10.​1007/​s12237-015-9973-z .
    Penhale, P. A. & W. O. Smith, 1977. Excretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnology and Oceanography 22: 400–407.CrossRef
    Plus, M., J.-M. Deslous-Paoli, I. Auby & F. Dagault, 2001. Factors influencing primary production of seagrass beds (Zostera noltii Hornem.) in the Thau lagoon (French Mediterranean coast). Journal of Experimental Marine Biology and Ecology 259: 63–84.PubMed CrossRef
    Post, A. F., Z. Dubinsky, K. Wyman & P. G. Falkowski, 1984. Kinetics of light-intensity adaptation in a marine planktonic diatom. Marine Biology 83: 231–238.CrossRef
    Ralph, P. J., 1998. Photosynthetic response of laboratory-cultured Halophila ovalis to thermal stress. Marine Ecology Progress Series 171: 123–130.CrossRef
    Ralph, P. J., S. M. Polk, K. A. Moore, R. J. Orth & W. O. Smith Jr, 2002. Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance. Journal of Experimental Marine Biology and Ecology 271: 189–207.CrossRef
    Rheuban, J. E., P. Berg & K. J. McGlathery, 2014a. Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Marine Ecology Progress Series 507: 1–13.CrossRef
    Rheuban, J. E., P. Berg & K. J. McGlathery, 2014b. Ecosystem metabolism along a colonization gradient of eelgrass (Zostera marina) measured by eddy correlation. Limnology and Oceanography 59: 1376–1387.CrossRef
    Rice, E. W. & L. Bridgewater, 2012. Standard methods for the examination of water and wastewater, 22nd ed. American Public Health Association, Washington.
    Silva, J. & R. Santos, 2003. Daily variation patterns in seagrass photosynthesis along a vertical gradient. Marine Ecology Progress Series 257: 37–44.CrossRef
    Spivak, A. C., E. A. Canuel, J. E. Duffy & J. P. Richardson, 2009. Nutrient enrichment and food web composition affect ecosystem metabolism in an experimental seagrass habitat. PLoS One 4: e7473.PubMed PubMedCentral CrossRef
    Staehr, P. A. & J. Borum, 2011. Seasonal acclimation in metabolism reduces light requirements of eelgrass (Zostera marina). Journal of Experimental Marine Biology and Ecology 407: 139–146.CrossRef
    Staehr, P. A., J. M. Testa, W. M. Kemp, J. J. Cole, K. Sand-Jensen & S. V. Smith, 2012. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquatic Sciences 74: 15–29.CrossRef
    Tobias, C. R., J. K. Böhlke & J. W. Harvey, 2007. The oxygen-18 isotope approach for measuring aquatic metabolism in high-productivity waters. Limnology and Oceanography 52: 1439–1453.CrossRef
    Vacchi, M., M. Montefalcone, C. F. Schiaffino, V. Parravicini, C. N. Bianchi, C. Morri & M. Ferrari, 2014. Towards a predictive model to assess the natural position of the Posidonia oceanica seagrass meadows upper limit. Marine Pollution Bulletin 83: 458–466.PubMed CrossRef
    Valiela, I., 1995. Marine ecological processes, 2nd ed. Springer, New York.CrossRef
    Waycott, M., B. J. Longstaff & J. Mellors, 2005. Seagrass population dynamics and water quality in the Great Barrier Reef region: a review and future research directions. Marine Pollution Bulletin 51: 343–350.PubMed CrossRef
    Ziegler, S. & R. Benner, 1998. Ecosystem metabolism in a subtropical, seagrass-dominated lagoon. Marine Ecology Progress Series 173: 1–12.CrossRef
    Ziegler, S. & R. Benner, 1999. Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Marine Ecology Progress Series 180: 149–160.CrossRef
  • 作者单位:Matthew P. Adams (1)
    Angus J. P. Ferguson (2)
    Paul S. Maxwell (1) (3)
    Brodie A. J. Lawson (4)
    Jimena Samper-Villarreal (5)
    Katherine R. O’Brien (1)

    1. School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
    2. NSW Office of Environment and Heritage, 59 Goulburn Street, Sydney, NSW, 2000, Australia
    3. Healthy Waterways, 200 Creek Street, Spring Hill, QLD, 4004, Australia
    4. Mathematical Sciences School, Queensland University of Technology, Brisbane, QLD, 4000, Australia
    5. Marine Spatial Ecology Lab, The University of Queensland, St Lucia, QLD, 4072, Australia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
Oxygen flux between aquatic ecosystems and the water column is a measure of ecosystem metabolism. However, the oxygen flux varies during the day in a “hysteretic” pattern: there is higher net oxygen production at a given irradiance in the morning than in the afternoon. In this study, we investigated the mechanism responsible for the hysteresis in oxygen flux by measuring the daily pattern of oxygen flux, light, and temperature in a seagrass ecosystem (Zostera muelleri in Swansea Shoals, Australia) at three depths. We hypothesised that the oxygen flux pattern could be due to diel variations in either gross primary production or respiration in response to light history or temperature. Hysteresis in oxygen flux was clearly observed at all three depths. We compared this data to mathematical models, and found that the modification of ecosystem respiration by light history is the best explanation for the hysteresis in oxygen flux. Light history-dependent respiration might be due to diel variations in seagrass respiration or the dependence of bacterial production on dissolved organic carbon exudates. Our results indicate that the daily variation in respiration rate may be as important as the daily changes of photosynthetic characteristics in determining the metabolic status of aquatic ecosystems. Keywords Seagrass Net ecosystem metabolism Oxygen Production Respiration Submerged aquatic vegetation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700