The formation of crystalline phases in metakaolin-based geopolymers in the presence of sodium nitrate
详细信息    查看全文
  • 作者:E. Ofer-Rozovsky ; M. Arbel Haddad ; G. Bar Nes ; A. Katz
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:51
  • 期:10
  • 页码:4795-4814
  • 全文大小:4,218 KB
  • 参考文献:1.Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal 37:1633–1656CrossRef
    2.Komnitsas K, Zaharaki D (2007) Geopolymerisation: a review and prospects for the minerals industry. Miner Eng 20:1261–1277. doi:10.​1016/​j.​mineng.​2007.​07.​011 CrossRef
    3.Qian G, Sun DD, Tay JH (2003) Immobilization of mercury and zinc in an alkali-activated slag matrix. J Hazard Mater 101:65–77. doi:10.​1016/​S0304-3894(03)00143-2 CrossRef
    4.Perera D, Vance E, Kiyama S, et al. (2007) Geopolymers as candidates for the immobilization of low-and intermediate-level waste. In: Materials Research Society Symposium Proceedings, pp 361–366
    5.Zhang J, Provis JL, Feng D, van Deventer JSJ (2008) Geopolymers for immobilization of Cr(6+), Cd(2+), and Pb(2+). J Hazard Mater 157:587–598. doi:10.​1016/​j.​jhazmat.​2008.​01.​053 CrossRef
    6.Duxson P, Fernandez-Jimenez A, Provis JL et al (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. doi:10.​1007/​s10853-006-0637-z CrossRef
    7.Weng L, Sagoe-Crenstil K (2007) Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part I—Low Si/Al ratio systems. J Mater Sci 42:2997–3006. doi:10.​1007/​s10853-006-0820-2 CrossRef
    8.Rocha J, Klinowski J, Adams JM (1991) Solid-state NMR elucidation of the role of mineralizers in the thermal stability and phase transformations of kaolinite. J Mater Sci 26:3009–3018. doi:10.​1007/​BF01124836 CrossRef
    9.Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem Eng Sci 62:2318–2329. doi:10.​1016/​j.​ces.​2007.​01.​028 CrossRef
    10.Provis JL, Lukey GC, van Deventer JSJ (2005) Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem Mater 17:3075–3085CrossRef
    11.Zhang B, MacKenzie KJD, Brown IWM (2009) Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate. J Mater Sci 44:4668–4676. doi:10.​1007/​s10853-009-3715-1 CrossRef
    12.Rahier H, Wastiels J, Biesemans M et al (2006) Reaction mechanism, kinetics and high temperature transformations of geopolymers. J Mater Sci 42:2982–2996. doi:10.​1007/​s10853-006-0568-8 CrossRef
    13.Rovnaník P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24:1176–1183. doi:10.​1016/​j.​conbuildmat.​2009.​12.​023 CrossRef
    14.Silva P, Sagoecrenstil K, Sirivivatnanon V (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem Concr Res 37:512–518. doi:10.​1016/​j.​cemconres.​2007.​01.​003 CrossRef
    15.Brough AR, Katz A, Sun GK et al (2001) Adiabatically cured, alkali-activated cement-based waste forms containing high levels of fly ash Formation of zeolites and Al-substituted C–S–H. Cem Concr Res 31:1437–1447. doi:10.​1016/​S0008-8846(01)00589-0 CrossRef
    16.Fernandez-Jimenez A, Monzo M, Vicent M et al (2008) Alkaline activation of metakaolin-fly ash mixtures: obtain of zeoceramics and zeocements. Microporous Mesoporous Mater 108:41–49. doi:10.​1016/​j.​micromeso.​2007.​03.​024 CrossRef
    17.Hajimohammadi A, Provis JL, van Deventer JSJ (2011) Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J Colloid Interface Sci 357:384–392. doi:10.​1016/​j.​jcis.​2011.​02.​045 CrossRef
    18.Chorover J, Choi S, Amistadi MK et al (2005) Improvement of metakaolin on radioactive Sr and Cs immobilization of alkali-activated slag matrix. J Hazard Mater 92:289–300. doi:10.​1016/​j.​apgeochem.​2006.​06.​019
    19.Fernandez-Jimenez A, Macphee DE, Lachowski EE, Palomo A (2005) Immobilization of cesium in alkaline activated fly ash matrix. J Nucl Mater 346:185–193. doi:10.​1016/​j.​jnucmat.​2005.​06.​006 CrossRef
    20.Provis JL, Walls P, van Deventer JSJ (2008) Geopolymerisation kinetics. 3. Effects of Cs and Sr salts. Chem Eng Sci 63:4480–4489. doi:10.​1016/​j.​ces.​2008.​06.​008 CrossRef
    21.Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422. doi:10.​1016/​j.​jhazmat.​2009.​07.​033 CrossRef
    22.El-Kamash AM (2008) Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151:432–445. doi:10.​1016/​j.​jhazmat.​2007.​06.​009 CrossRef
    23.Ibrahim HA, El-Kamash AM, Hanafy M, Abdel-Monem NM (2008) Examination of the use of synthetic Zeolite NaA-X blend as backfill material in a radioactive waste disposal facility: thermodynamic approach. Chem Eng J 144:67–74. doi:10.​1016/​j.​cej.​2008.​01.​012 CrossRef
    24.Mon J, Deng Y, Flury M, Harsh JB (2005) Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophane. Microporous Mesoporous Mater 86:277–286. doi:10.​1016/​j.​micromeso.​2005.​07.​030 CrossRef
    25.Demortier A, Gobeltz N, Lelieur JP, Duhayon C (1999) Infrared evidence for the formation of an intermediate compound during the synthesis of zeolite Na–A from metakaolin. Int J Inorg Mater 1:129–134. doi:10.​1016/​S1466-6049(99)00020-3 CrossRef
    26.Zhang Z, Wang H, Provis JL et al (2012) Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim Acta 539:23–33. doi:10.​1016/​j.​tca.​2012.​03.​021 CrossRef
    27.Breck DW (1974) Zeolite molecular sieves: structure, chemistry and use. Wiley, New York
    28.Desbats-Le Chequer C, Frizon F (2011) Impact of sulfate and nitrate incorporation on potassium- and sodium-based geopolymers: geopolymerization and materials properties. J Mater Sci 46:5657–5664. doi:10.​1007/​s10853-011-5516-6 CrossRef
    29.Komnitsas K, Zaharaki D, Bartzas G (2013) Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl Clay Sci 73:103–109. doi:10.​1016/​j.​clay.​2012.​09.​018 CrossRef
    30.Lee WK, van Deventer JSJ (2002) The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids Surfaces A Physicochem Eng Asp 211:115–126. doi:10.​1016/​S0927-7757(02)00239-X CrossRef
    31.Fernandez-Jimenez A, Palomo A, Fernández-Jiménez A, Palomo A (2005) Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater 86:207–214. doi:10.​1016/​j.​micromeso.​2005.​05.​057 CrossRef
    32.Molina A, Poole C (2004) A comparative study using two methods to produce zeolites from fly ash. Amin Eng 17:167–173. doi:10.​1016/​j.​mineng.​2003.​10.​025
    33.Purnomo CW, Salim C, Hinode H (2012) Synthesis of pure Na-X and Na-A zeolite from bagasse fly ash. Microporous Mesoporous Mater 162:6–13. doi:10.​1016/​j.​micromeso.​2012.​06.​007 CrossRef
    34.Fernandes Machado NRC, Miotto DMM (2005) Synthesis of Na-A and -X zeolites from oil shale ash. Fuel 84:2289–2294. doi:10.​1016/​j.​fuel.​2005.​05.​003 CrossRef
    35.Katz A (1998) Microscopic study of alkali-activated fly ash. Cem Concr Res 28:197–208. doi:10.​1016/​S0008-8846(97)00271-8 CrossRef
    36.Barnes MC, Addai-Mensah J, Gerson AR (1999) A methodology for quantifying sodalite and cancrinite phase mixtures and the kinetics of the sodalite to cancrinite phase transformation. Microporous Mesoporous Mater 31:303–319CrossRef
    37.Buhl JC, Lons J (1996) Synthesis and crystal structure of nitrate enclathrated sodalite Na-8[AlSiO4](6)(NO3)(2). J Alloys Compd 235:41–47. doi:10.​1016/​0925-8388(95)02148-5 CrossRef
    38.Buhl JC, Taake C, Stief F, Fechtelkord M (2000) The crystallisation kinetics of nitrate cancrinite Na-7.6[AlSiO4](6)(NO3)(1.6) (H2O2)(2) under low temperature hydrothermal conditions. React Kinet Catal Lett 69:15–21. doi:10.​1023/​A:​1005676322206 CrossRef
    39.Buhl JC, Stief F, Fechtelkord M et al (2000) Synthesis, X-ray diffraction and MAS NMR characteristics of nitrate cancrinite Na-7.6[AlSiO4](6)(NO3)(1.6)(H2O)(2). J Alloys Compd 305:93–102. doi:10.​1016/​S0925-8388(00)00724-6 CrossRef
    40.Kumar R, Bhaumik A, Ahedi RK, Genapathy S (1996) Promoter-induced enhancement of the crystallization rate of zeolites and related molecular sieves. Nature 381:298CrossRef
    41.Liu Q, Navrotsky A (2007) Synthesis of nitrate sodalite: an in situ scanning calorimetric study. Geochim Cosmochim Acta 71:2072–2078. doi:10.​1016/​j.​gca.​2007.​01.​011 CrossRef
    42.Barnes MC, Addai-Mensah J, Gerson AR (1999) The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent Bayer liquor. Microporous Mesoporous Mater 31:287–302CrossRef
    43.Deng Y, Flury M, Harsh J et al (2006) Cancrinite and sodalite formation in the presence of cesium, potassium, magnesium, calcium and strontium in Hanford tank waste simulants. Appl Geochemistry 21:2049–2063. doi:10.​1016/​j.​apgeochem.​2006.​06.​019 CrossRef
    44.Liu Q, Xu H, Navrotsky A (2005) Nitrate cancrinite: synthesis, characterization, and determination of the enthalpy of formation. Microporous Mesoporous Mater 87:146–152. doi:10.​1016/​j.​micromeso.​2005.​08.​008 CrossRef
    45.Chen S, Wu M, Zhang S (2010) Mineral phases and properties of alkali-activated metakaolin-slag hydroceramics for a disposal of simulated highly-alkaline wastes. J Nucl Mater 402:173–178. doi:10.​1016/​j.​jnucmat.​2010.​05.​015 CrossRef
    46.Barrer RM (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Acadamic Press, London
    47.Hollman G, Steenbruggen G, Janssen-Jurkovičová M (1999) A two-step process for the synthesis of zeolites from coal fly ash. Fuel 78:1225–1230. doi:10.​1016/​S0016-2361(99)00030-7 CrossRef
    48.Gabelica Z, Blom N, Derouane EG (1983) Synthesis and characterization of zsm-5 type zeolites: III. A critical evaluation of the role of alkali and ammonium cations. Appl Catal 5:227–248. doi:10.​1016/​0166-9834(83)80135-3 CrossRef
    49.Ocanto F, Alvarez R, Urbinadenavarro C et al (2008) Influence of the alkalinity and NO3-/Cl− anionic composition on the synthesis of the cancrinite–sodalite system. Microporous Mesoporous Mater 116:318–322. doi:10.​1016/​j.​micromeso.​2008.​04.​019 CrossRef
    50.Zhao H, Deng Y, Harsh JB et al (2004) Alternation of kaolinite to cancrinite and sodalite by simulated Hanford tank waste and its impact on cesium retention. Clays Clay Miner 52:1–13CrossRef
    51.Chorover J, Choi S, Amistadi MK et al (2003) Linking cesium and strontium uptake to kaolinite weathering in simulated tank waste leachate. Environ Sci Technol 37:2200–2208CrossRef
    52.Chorover J, Choi S, Rotenberg P et al (2008) Silicon control of strontium and cesium partitioning in hydroxide-weathered sediments. Geochim Cosmochim Acta 72:2024–2047. doi:10.​1016/​j.​gca.​2008.​01.​026 CrossRef
    53.Choi S, Crosson G, Mueller K et al (2005) Clay mineral weathering and contaminant dynamics in a caustic aqueous system II. Mineral transformation and microscale partitioning. Geochim Cosmochim Acta 69:4437–4451. doi:10.​1016/​j.​gca.​2005.​04.​004 CrossRef
  • 作者单位:E. Ofer-Rozovsky (1)
    M. Arbel Haddad (2)
    G. Bar Nes (2)
    A. Katz (1)

    1. Faculty of Civil and Environmental Engineering, Technion I.I.T, 32000, Haifa, Israel
    2. Nuclear Research Center – Negev, PO Box 9001, Beer-Sheva, Israel
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Geopolymers generated by alkali-activation of amorphous aluminosilicate sources are considered as an alternative immobilizing matrix for hazardous and nuclear wastes. Low and intermediate level nuclear waste streams are often highly alkaline saline solutions containing various concentrations of nitrate salts. The aim of the research project presented here was to study the effect of nitrate ions on the formation and evolution of metakaolin-based geopolymeric systems at moderate temperatures, i.e., at 40 °C. Metakaolin was alkali-activated using NaOH solutions of varying concentrations, yielding H2O:OH- ratios of 5.50, 9.15, 13.75, and 27.50. Sodium nitrate was added to the activation solutions at a constant [NO3 −]: [OH−] ratio of 0.25. Most geopolymeric mixtures were designed to obtain a Na2O:Al2O3 ratio of 1.00 for nitrate-free mixtures, or 1.25 for those including sodium nitrate. In addition, the effect of deviation from these values (Na2O:Al2O3 ratios of 0.84 and 1.20 for nitrate-free samples, 1.04 and 1.50 for nitrate-bearing samples) was also studied. The samples were cured in sealed containers at 40 °C for periods ranging from 1 day to 3 months. The products were characterized by X-ray diffractometry, Fourier transform mid-infrared spectroscopy, and scanning electron microscopy as well as by compressive strength measurements. The results demonstrate the influence of composition, alkalinity, SiO2:Al2O3 ratio, Na2O:Al2O3 ratio, nitrate concentration, and curing times on the mineralogy of the geopolymeric matrix. Various crystalline phases such as zeolite A, zeolite X, and nitrate-bearing phases, namely nitrate sodalite and nitrate cancrinite, were identified among the reaction products. The sequence of phase evolution in these geopolymeric systems was elucidated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700