Quantum mechanical treatment of As3+-thiol model compounds: implication for the core structure of As(III)-metallothionein
详细信息    查看全文
文摘
Exposure to inorganic arsenic (As) is one of the major health concerns in several regions around the world. Binding of As(III) with thiols is central to the mechanisms related to its toxicity, detoxification, and therapeutic effects. Due to its high thiol content, metallothionein (MT) is presumed to play an important role in case of arsenic toxicity. Consequences of these As-thiol interactions are not yet clear due to various difficulties in the characterization of arsenic bound proteins by spectroscopic techniques. Computational modeling can be a reliable approach in predicting the molecular structures of such complexes. This paper presents the results of a systematic study on different As(III)-thiol model compounds conducted by both ab initio and DFT methods with different Gaussian type basis sets. Proficiency of these theoretical methods has been evaluated in terms of bond lengths, bond angles, free energy, partial atomic charges, computational cost, and comparison with the experimental data. It has been demonstrated that the DFT-B3LYP/6-311+G(3df) functional offers better accuracy in predicting the structure and the UV absorption spectra of As(III)-thiol complexes. The results of the present study also helps in defining the boundaries for the core of arsenic bound MT so that quantum mechanical/molecular mechanical (QM/MM) methods can be employed to predict the structural and functional aspects of the protein.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700