Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L.
详细信息    查看全文
  • 作者:Xiang Liu ; Juan Chen ; Guang-Hui Wang ; Wen-Hua Wang ; Zhi-Jun Shen…
  • 关键词:Hydrogen sulfide ; Zinc toxicity ; Oxidative stress ; Metallothioneins ; Solanum nigrun
  • 刊名:Plant and Soil
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:400
  • 期:1-2
  • 页码:177-192
  • 全文大小:1,439 KB
  • 参考文献:Adams JP, Adeli A, Hsu CY, Harkess RL, Page GP, dePamphilis CW, Schultz EB, Yuceer C (2011) Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1. J Exp Bot 62:3737–3752PubMedCentral CrossRef PubMed
    Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344CrossRef
    Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399CrossRef PubMed
    Arrivault S, Senger T, Krämer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861–879CrossRef PubMed
    Baker A, Reeves R, Hajar A (2006) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68CrossRef
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef PubMed
    Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702CrossRef PubMed
    Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205CrossRef
    Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, Dong XJ, He JX, Pei ZM, Zheng HL (2011) Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J Exp Bot 62:4481–4493PubMedCentral CrossRef PubMed
    Chen J, Wang WH, Wu FH, You CY, Liu TW, Dong XJ, He JX, Zheng HL (2012) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil 362:301–318CrossRef
    Cherian M, Chan H (1993) Biological functions of metallothionein: a review. In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III: biological roles and medical implications. Birkhauser, Basel, pp. 87–109
    Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486CrossRef PubMed
    Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRef PubMed
    Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065PubMedCentral CrossRef PubMed
    Drager DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Kramer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439CrossRef PubMed
    Ferraz P, Fidalgo F, Almeida A, Teixeira J (2012) Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved? Plant Physiol Biochem 57:254–260CrossRef PubMed
    Fidalgo F, Azenha M, Silva AF, de Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food Energy Sec 2:70–80CrossRef
    Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M (2011) ITRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol 155:1893–1907PubMedCentral CrossRef PubMed
    Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224PubMedCentral CrossRef PubMed
    Halimaa P, Lin YF, Ahonen VH, Blande D, Clemens S, Gyenesei A, Haikio E, Karenlampi SO, Laiho A, Aarts MG, Pursiheimo JP, Schat H, Schmidt H, Tuomainen MH, Tervahauta AI (2014) Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation. Environ Sci Technol 48:3344–3353CrossRef PubMed
    Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260CrossRef PubMed
    Hassinen VH, Tuomainen M, Peraniemi S, Schat H, Karenlampi SO, Tervahauta AI (2009) Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens. J Exp Bot 60:187–196PubMedCentral CrossRef PubMed
    Hegelund JN, Schiller M, Kichey T, Hansen TH, Pedas P, Husted S, Schjoerring JK (2012) Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding. Plant Physiol 159:1125–1137PubMedCentral CrossRef PubMed
    Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32
    Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Bioph Res Commun 237:527–531CrossRef
    Israr M, Jewell A, Kumar D, Sahi SV (2011) Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J Hazard Mater 186:1520–1526CrossRef PubMed
    Jin XF, Yang XE, Islam E, Liu D, Mahmood Q, Li H, Li J (2008) Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance. Plant Physio Biochem 46:997–1006CrossRef
    Khudsar T, Mahmooduzzafar IM, Sairam RK (2004) Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biol Plantarum 48:255–260CrossRef
    Kramer U (2005) MTP1 mops up excess zinc in Arabidopsis cells. Trends Plant Sci 10:313–315CrossRef PubMed
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRef PubMed
    Lai D, Mao Y, Zhou H, Li F, Wu M, Zhang J, He Z, Cui W, Xie Y (2014) Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci 225:117–129CrossRef PubMed
    Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–79CrossRef PubMed
    Li L, Wang Y, Shen W (2012) Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. Biometals 25:617–631CrossRef PubMed
    Li ZG, Yang SZ, Long WB, Yang GX, Shen ZZ (2013) Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ 36:1564–1572CrossRef PubMed
    Lin YF, Aarts MG (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206CrossRef PubMed
    Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 36:1607–1616CrossRef PubMed
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408CrossRef PubMed
    Marques APGC, Oliveira RS, Rangel AOSS, Castro PML (2006) Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere 65:1256–1263CrossRef PubMed
    Mills RF, Francini A, da Rocha PSF, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791CrossRef PubMed
    Mortvedt J (2000) Bioavailability of micronutrients. In: Summer ME (ed) Handbook of soil science. CRC Press, Boca Raton, Florida, pp. 71–86
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497
    Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. BBA-Mol Cell Res 1763:609–620
    Qiao Z, Jing T, Liu Z, Zhang L, Jin Z, Liu D, Pei Y (2015) H2S acting as a downstream signaling molecule of SA regulates Cd tolerance in Arabidopsis. Plant Soil 393:137–146CrossRef
    Remans T, Opdenakker K, Guisez Y, Carleer R, Schat H, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ Exp Bot 84:61–71CrossRef
    Riemenschneider A, Wegele R, Schmidt A, Papenbrock J (2005) Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J 272:1291–1304CrossRef PubMed
    Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10PubMedCentral CrossRef PubMed
    Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nut 13:905–927
    Sagardoy R, Morales F, Lopez-Millan AF, Abadia A, Abadia J (2009) Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol 11:339–350CrossRef PubMed
    Shan C, Dai H, Sun Y (2012) Hydrogen sulfide protects wheat seedlings against copper stress by regulating the ascorbate and glutathione metabolism in leaves. Aust J Crop Sci 6:248–254
    Shanmugam V, Lo JC, Yeh KC (2013) Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Front Plant Sci 4:281PubMedCentral CrossRef PubMed
    Shi H, Ye T, Chan Z (2014) Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 74:99–107CrossRef PubMed
    Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant Cell Environ 38:207–223CrossRef PubMed
    Sinclair SA, Kramer U (2012) The zinc homeostasis network of land plants. BBA-Mol Cell Res 1823:1553–1567
    Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS (2007) The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytol 174:39–45CrossRef PubMed
    Song A, Li P, Li Z, Fan F, Nikolic M, Liang Y (2011) The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344:319–333CrossRef
    Song Y, Hudek L, Freestone D, Puhui J, Michalczyk AA, Senlin Z, Ackland ML (2014) Comparative analyses of cadmium and zinc uptake correlated with changes in natural resistance-associated macrophage protein (NRAMP) expression in Solanum nigrum L. and Brassica Rapa. Environ Chem 11:653–660CrossRef
    Sun J, Wang RG, Zhang X, Yu YC, Zhao R, Li ZY, Chen SL (2013) Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells. Plant Physiol Biochem 65:67–74CrossRef PubMed
    Teixeira J, Ferraz P, Almeida A, Verde N, Fidalgo F (2013) Metallothionein multigene family expression is differentially affected by chromium (III) and (VI) in Solanum nigrum L. plants. Food Energy Sec 2:130–140CrossRef
    Tsonev T, Lidon FJC (2012) Zinc in plants-an overview. Emir J Food Agric 24:322–333
    van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Ver Loren van Themaat E, Koornneef M, Aarts MG (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147PubMedCentral CrossRef PubMed
    Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRef PubMed
    Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312CrossRef PubMed
    Wójcik M, Skórzyńska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48:145–155CrossRef
    Wang BL, Shi L, Li YX, Zhang WH (2010) Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. Planta 231:1301–1309CrossRef PubMed
    Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75:1468–1476CrossRef PubMed
    Wang Y, Li L, Cui W, Xu S, Shen W, Wang R (2011) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351:107–119CrossRef
    Weckx J, Clijsters H (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35:405–410
    Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334PubMedCentral CrossRef PubMed
    Xu J, Zhu Y, Ge Q, Li Y, Sun J, Zhang Y, Liu X (2012) Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol 196:125–138CrossRef PubMed
    Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229CrossRef PubMed
    Zhang H, Hu LY, Li P, Hu KD, Jiang CX, Luo JP (2010a) Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plant 54:743–747CrossRef
    Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529CrossRef PubMed
    Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010b) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567CrossRef PubMed
  • 作者单位:Xiang Liu (1)
    Juan Chen (1)
    Guang-Hui Wang (2)
    Wen-Hua Wang (3)
    Zhi-Jun Shen (1)
    Mei-Rong Luo (1)
    Gui-Feng Gao (1)
    Martin Simon (1)
    Kabir Ghoto (1)
    Hai-Lei Zheng (1)

    1. Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
    2. College of life sciences, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
    3. Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian, 361005, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Aims Zinc (Zn) is a toxic element for plant at high concentrations. As a biologically active gaseous molecule, hydrogen sulfide (H2S) regulates plant growth and development. The aim of this study is to reveal the ameliorative effects of H2S on the physiological and molecular responses of a hyperaccumulator to Zn toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700