Use of MTT assay for determination of the biofilm formation capacity of microorganisms in metalworking fluids
详细信息    查看全文
  • 作者:El?bieta Anna Trafny (1)
    Rafa? Lewandowski (1)
    Irena Zawistowska-Marciniak (1)
    Ma?gorzata St?pińska (1)
  • 关键词:MTT assay ; Metalworking fluids ; Biofilm ; Biocides
  • 刊名:World Journal of Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:29
  • 期:9
  • 页码:1635-1643
  • 全文大小:381KB
  • 参考文献:1. Abate G, Aseffa A, Selassie A, Goshu S, Fekade B, WoldeMeskal D, Mi?rner H (2004) Direct colorimetric assay for rapid detection of rifampin-resistant / Mycobacterium tuberculosis. J Clin Microbiol 42:871-73. doi:10.1128/JCM.42.2.871-873.2004 CrossRef
    2. Atlas RM (1997) In: Parks LC (ed) Handbook of microbiological media, 2nd edn. Boca Raton, FL, CRC Press
    3. Bakalova S, Doycheva A, Ivanova I, Groudeva V, Dimkov R (2007) Bacterial microflora of contaminated metalworking fluids. Biotechnol Biotechnol Eq?21:437-41
    4. Burton CM, Crook B, Scaife H, Evans GS, Barber CM (2012) Systematic review of respiratory outbreaks associated with exposure to water-based metalworking fluids. Ann Occup Hyg 56:374-88. doi:10.1093/annhyg/mer121 CrossRef
    5. Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA (2012) Inhibition of biofilm formation, quorum sensing and infection in / Pseudomonas aeruginosa by natural products- inspired organosulfur compounds. PLoS ONE 7:e38492. doi:10.1371/journal.pone.0038492 CrossRef
    6. Chang SC, Anderson TI, Bahrman SE, Gruden CL, Khijniak AI, Adriaens P (2005) Comparing recovering efficiency of immunomagnetic separation and centrifugation of mycobacteria in metalworking fluids. J Ind Microbiol Biotechnol 32:629-38. doi:10.1007/s10295-005-0238-x CrossRef
    7. Cook PE, Gaylarde CC (1988) Biofilm formation in aqueous metal working fluids. Int Biodeterior 24:265-70. doi:10.1016/0265-3036(88)90010-3 CrossRef
    8. Cyprowski M, Piotrowska M, Zakowska Z, Szadkowska-Stańczyk I (2007) Microbial and endotoxin contamination of water-soluble metalworking fluids. Int J Occup Med Environ Health 20:365-71 CrossRef
    9. Dawson CC, Intapa C, Jabra-Rizk MA (2011) “Persisters- survival at the cellular level. PLoS Pathog 7:e1002121. doi:10.1371/journal.ppat.1002121 CrossRef
    10. Dilger S, Fluri A, Sonntag HG (2005) Bacterial contamination of preserved and non-preserved metalworking fluids. Int J Hyg Environ Health 208:467-76. doi:10.1016/j.ijheh.2005.09.001 CrossRef
    11. Falkinham JO (2009) Effects of biocides and other metal removal fluid constituents on / Mycobacterium immunogenum. Appl Environ Microbiol 75:2057-061. doi:10.1128/AEM.02406-08 CrossRef
    12. Furuhata K, Ishizaki N, Fukuyama M (2010) Characterization of heterotrophic bacteria isolated from the biofilm of a kitchen sink. Biocontrol Sci 15:21-5. doi:10.4265/bio.15.21 CrossRef
    13. Gilbert Y, Veillette M, Duchaine C (2010) Metalworking fluids biodiversity characterization. J Appl Microbiol 108:437-49. doi:10.1111/j.1365-2672.2009.04433.x CrossRef
    14. Kairo SK, Bedwell J, Tyler PC, Carter A, Corbel MJ (1999) Development of a tetrazolium salt assay for rapid determination of viability of BCG vaccines. Vaccine 17:2423-438. doi:10.1016/S0264-410X(99)00023-7 CrossRef
    15. Kapoor R, Yadav JS (2010) Development of a rapid ATP bioluminescence assay for biocidal susceptibility testing of rapidly growing mycobacteria. J Clin Microbiol 48:3725-728. doi:10.1128/JCM.01482-10 CrossRef
    16. Lewandowski R, Koz?owska K, Szpakowska M, St?pińska M, Trafny EA (2010) Use of a foam spatula for sampling surfaces after bioaerosol deposition. Appl Environ Microbiol 76:688-94. doi:10.1128/AEM.01849-09 CrossRef
    17. Lucchesi EG, Eguchi SY, Moraes AM (2012) Influence of a triazine derivative-based biocide on microbial biofilms of cutting fluids in contact with different substrates. J Ind Microbiol Biotechnol 39:743-48. doi:10.1007/s10295-011-1081-x CrossRef
    18. Marchand G, Lavoie J, Racine L, Lacombe N, Cloutier Y, Bélanger E, Lemelin C, Desroches J (2010) Evaluation of bacterial contamination and control methods in soluble metalworking fluids. J Occup Environ Hyg 7:358-66. doi:10.1080/15459621003741631 CrossRef
    19. Mattsby-Baltzer I, Sandin M, Ahlstr?m B, Allenmark S, Edebo M, Falsen E, Pedersen K, Rodin N, Thompson RA, Edebo L (1989) Microbial growth and accumulation in industrial metal-working fluids. Appl Environ Microbiol 55:2681-689
    20. Murat JB, Grenouillet F, Reboux G, Penven E, Batchili A, Dalphin JC, Thaon I, Millon L (2012) Factors influencing the microbial composition of metalworking fluids and potential implications for machine operator’s lung. Appl Environ Microbiol 78:34-1. doi:10.1128/AEM.06230-11 CrossRef
    21. Perkins SD, Angenent LT (2010) Potential pathogenic bacteria in metalworking fluids and aerosols from a machining facility. FEMS Microbiol Ecol 74:643-54 CrossRef
    22. Rabenstein A, Koch T, Remesch M, Brinksmeier E, Kuever J (2009) Microbial degradation of water miscible metal working fluids. Int Biodeterior Biodegradation 63:1023-029. doi:10.1016/j.ibiod.2009.07.005 CrossRef
    23. Raut U, Rantai S, Narang P, Chauhan DS, Chahar M, Narang R, Mendiratta DK (2012) Comparison of the 3- (4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide tube method with the conventional method and real-time polymerase chain reaction for the detection of rifampicin resistance in Mycobacterium tuberculosis. Indian J Med Microbiol 30:81-4. doi:10.4103/0255-0857.93047 CrossRef
    24. Saha R, Donofrio RS (2012) The microbiology of metalworking fluids. Appl Microbiol Biotechnol 94:1119-130. doi:10.1007/s00253-012-4055-7 CrossRef
    25. Saha R, Donofrio RS, Goeres DM, Bagley ST (2012) Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization. Appl Microbiol Biotechnol 94:799-08. doi:10.1007/s00253-011-3647-y CrossRef
    26. Selvaraju SB, Khan IU, Yadav JS (2005) Biocidal activity of formaldehyde and nonformaldehyde biocides toward / Mycobacterium immunogenum and / Pseudomonas fluorescens in pure and mixed suspensions in synthetic metalworking fluid and saline. Appl Environ Microbiol 71:542-46. doi:10.1128/AEM.71.1.542-546.2005 CrossRef
    27. Selvaraju SB, Khan IU, Yadav JS (2011) Susceptibility of / Mycobacterium immunogenum and / Pseudomonas fluorescens to formaldehyde and non-formaldehyde biocides in semi-synthetic metalworking fluids. Int J Mol Sci 12:725-41. doi:10.3390/ijms12010725 CrossRef
    28. Sylvester PW (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol 716:157-68. doi:10.1007/978-1-61779-012-6_9 CrossRef
    29. Theaker D, Thompson I (2010) The industrial consequences of microbial deterioration of metal-working fluid. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2642-650. doi:10.1007/978-3-540-77587-4_196
    30. Walencka E, Sadowska B, Ró?alska S, Hryniewicz W, Ró?alska B (2005) Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication. Pol J Microbiol 54:191-00
    31. Wilson RW, Steingrube VA, B?ttger EC, Springer B, Brown-Elliott BA, Vincent V, Jost KC, Zhang Y, Garcia MJ, Chiu SH, Onyi GO, Rossmoore H, Nash DR, Wallace RJ (2001) / Mycobacterium immunogenum sp. nov., a novel species related to / Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int J Syst Evol Microbiol 51:1751-764. doi:10.1099/00207713-51-5-1751 CrossRef
    32. Zhao T, Liu Y (2010) N-acetylcysteine inhibit biofilms produced by / Pseudomonas aeruginosa. BMC Microbiol 10:140. doi:10.1186/1471-2180-10-140 CrossRef
  • 作者单位:El?bieta Anna Trafny (1)
    Rafa? Lewandowski (1)
    Irena Zawistowska-Marciniak (1)
    Ma?gorzata St?pińska (1)

    1. Department of Microbiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
文摘
Biofilm formation is a well-known problem in management of metalworking fluid systems. Due to persistence of microorganisms within biofilms, the reappearance of various species of bacteria, including nontuberculous mycobacteria is often observed after the use of biocides and/or cleaning of delivery systems and replacement of cooling fluid. The aim of this study was to determine the usefulness of the tetrazolium salt assay (MTT assay) for assessing the viability of bacteria in biofilms formed in vitro in fresh and used cutting oils, as well as their susceptibility to antimicrobial biocides. Biofilms were established in the microtiter plate format. The results showed that quantification of formazan, a product of the tetrazolium salt reduction by electron transport system could be used for determination of the propensity of bacteria to form biofilms in these complex media. The use of the assay allows also determination of antimicrobial activity of biocides against biofilms in fresh and used metalworking fluids. Biofilms produced by Gram-negative isolates recovered from field metalworking fluids as well as the wild bacterial communities differed in metabolic activity depending on the type of fresh coolants. The MTT assay has high-throughput potential and can be efficiently used for determination of biofilm-forming capacity of microorganisms from individual machines in metalworking industry. The use of the assay may also guide the selection of the most appropriate biocide to fight these microorganisms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700