Magnetic and dielectric properties of metamagnetic TbCo0.5Mn0.5O3.07 ceramics
详细信息    查看全文
  • 作者:J. Su (1)
    J. T. Zhang (2)
    X. M. Lu (2)
    C. J. Lu (1)
    J. He (2)
    Q. C. Li (1)
    J. Zhou (2)
    J. S. Zhu (2)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:49
  • 期:10
  • 页码:3681-3686
  • 全文大小:1,526 KB
  • 参考文献:1. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature (London) 442:759-65 CrossRef
    2. Neurgaonkar RR, Santh I, Oliver JR, Wu ET, Cross LE (1990) Growth of perovskite PZT and PLZT thin films. J Mater Sci 25:2053. doi:10.1007/BF01045763.pdf CrossRef
    3. Lin YQ, Chen XM, Liu XQ (2009) Relaxor-like dielectric behavior in La2NiMnO6 double perovskite ceramics. Solid State Commun 149:784-87 CrossRef
    4. Krichevtsov BB, Pavlov VV, Pisarev RV (1989) Giant linear magnetoelectric effect in garnet ferrite films. JETP Lett 49:535-39
    5. Tellier CR (1987) Surface roughness and transverse magnetic field dependence of the Hall coefficient and the magnetoresistance in thin metal films. J Mater Sci 22:2906. doi:10.1007/BF01086489.pdf CrossRef
    6. Larrégola SA, Alonso JA, Sheptyakov D, Algueró M, Mu?oz A, Pomjakushin V, Pedregosa JC (2010) An original polymorph sequence in the high-temperature evolution of the perovskite Pb2TmSbO6. J Am Chem Soc 132:14470-4480 CrossRef
    7. Sharma G, Saha J, Kaushik SD, Siruguri V, Patnaik S (2013) Magnetism driven ferroelectricity above liquid nitrogen temperature Y2CoMnO6. Appl Phys Lett 103:012903 CrossRef
    8. Azuma M, Tajata K, Saito T, Ishiwata S, Shimakawa Y, Takano M (2005) Designed ferromagnetic, ferroelectric Bi2NiMnO6. J Am Chem Soc 127:8889-892 CrossRef
    9. Zhu M, Lin Y, Lo EWC, Wang Q, Zhao ZJ, Xie WH (2012) Electronic and magnetic properties of La2NiMnO6 and La2CoMnO6 with ordering. Appl Phys Lett 100:062406 CrossRef
    10. Chatterji T, Frick B, Nair HS (2012) Magnetic ordering in double perovskites R2CoMnO6 (R?=?Y, Tb) investigated by high resolution neutron spectroscopy. J Phys 24:266005
    11. Singh MP, Truong KD, Fournier P (2007) Magnetodielectric effect in double perovskite La2CoMnO6 thin films. Appl Phys Lett 91:042504 CrossRef
    12. Troyanchuk IO, Samsonenko NV, Kasper NV, Szymczak H, Nabialek A (1997) Magnetic ordering in perovskites containing manganese and cobalt. J Phys 9:8287-295
    13. Asish K, Kundu V, Pralong B, Raveau J, Caignert V (2011) Magnetic and electrical properties of ordered 112-type perovskite LnBaCoMn3-δ (Ln?=?Nd, Eu). J Mater Sci 46:681. doi:10.1007/s10853-010-4791-y.pdf CrossRef
    14. Khomchenko VA, Troyanchuk IO, Sazonov AP, Sikolenko VV, Szymczak H, Szymczak R (2006) Metamagnetic behavior in TbCo0.5Mn0.5O3.07 perovskite. J Phys 18:9541-548
    15. Truong KD, Singh MP, Jandl S, Fournier P (2011) Investigation of phonon behavior in Pr2NiMnO6 by micro-Raman spectroscopy. J Phys 23:052202
    16. Troyanchuk IO, Khalyavin DD, Lynn JW, Erwin RW, Huang Q, Szymczak H, Szymczak R, Baran M (2000) Magnetic phase diagrams of the Ln (Mn1?em class="a-plus-plus">x Co / x ) O3 (Ln?=?Eu,-Nd, ?Y) systems. J Appl Phys 88:360 CrossRef
    17. Vasiliev AN, Volkova OS, Lobanovskii LS, Troyanchuk IO, Hu Z, Tjeng LH, Khomskii DI, Lin HJ, Chen CT, Tristan N, Kretzschmar F, Klingeler R, Büchner B (2008) Valence states and metamagnetic phase transition in partially B-site-disorder EuMn0.5Co0.5O3.0. Phys Rev B 77:104442 CrossRef
    18. Dass RI, Goodenough JB (2003) Multiple magnetic phases of La2CoMnO6?em class="a-plus-plus">δ (0?≤?em class="a-plus-plus">δ?.05). Phys Rev B 67:014401 CrossRef
    19. Cornejo DR, Peixoto RF, Reboth PF, Fichtner PFP, Franco VCD, Villas-Boas V, Missell FP (2010) First-order-reversal-curve analysis of Pr–Fe–B-based exchange spring magnets. J Mater Sci 45:5077. doi:10.1007/s10853-010-4353-3.pdf CrossRef
    20. Lan CY, Jiang YW, Yang SG (2011) Magnetic properties of La and (La, Zr) doped BiFeO3 ceramics. J Mater Sci 46:734. doi:10.1007/s10853-010-4805-9.pdf CrossRef
    21. Bahout MM, Roisnel T, Bourée F, André G, Moure C, Pe?a O (2007) Cation distribution and ferromagnetic exchange in the YMn0.5Co0.5O3 perovskite investigated by neutron powder diffraction. J Phys Chem Solids 180:1737-742
    22. Bahout MM, Roisnel T, Bourée F, André G, Moure C, Pe?a O (2007) Neutron diffraction evidence for a cationic order in the REMn0.5Ni0.5O3 (RE?=?La, Nd) and YMn0.5Co0.5O3 perovskites. Prog Solid State Chem 35:257-64 CrossRef
    23. Zhou JS, Yin HQ, Goodenough JB (2001) Vibronic superexchange in single-crystal LaMn1?em class="a-plus-plus">x Ga / x O3. Phys Rev B 63:184423 CrossRef
    24. Sati P, Hayn R, Kuzian R, Régnier S, Sch?fer S, Stepanov A, Morhain C, Deparis C, Laügt M, Goiran M, Golacki Z (2006) Magnetic anisotropy of Co2+ as signature of intrinsic ferromagnetism in ZnO:Co. Phys Rev Lett 96:017203 CrossRef
    25. Venkatesan M, Fitzgerald CB, Lunney JG, Coey JMD (2004) Anisotropic ferromagnetism in substituted zinc oxide. Phys Rev Lett 93:177206 CrossRef
    26. Wang XL, James M, Horvat J, Gao F, Li AH, Liu HK, Dou SX (2002) Structure and spin glass behavior in non-metallic Yb2CoMnO6 perovskite manganite. J Magn Magn Mater 246:86-2 CrossRef
    27. Ganeshraj C, Pradheesh R, Santhosh PN (2012) Structural, magnetic, transport and magnetocaloric properties of metamagnetic DyMn0.5Co0.5O3. J Appl Phys 111:07A914 CrossRef
    28. Su J, Lu XM, Liu YY, Zhang JT, Li GR, Ruan XZ, Huang FZ, Du J, Zhu JS (2012) Multiferroicity in 0.7Pb(Zr0.52Ti0.48)O3-.3Pb(Ni1/3Nb2/3)O3 ceramics. Appl Phys Lett 100:102905 CrossRef
    29. Molak A, Paluch M, Pawlus S, Klimontko J, Ujma Z, Gruszka I (2008) Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25) (Mn0.25Nb0.75) O3 ceramics. J Phys D 38:1450-460 CrossRef
    30. Lin YQ, Chen XM (2011) Dielectric, ferromagnetic characteristics, and room-temperature magnetodielectric effects in double perovskite La2CoMnO6 ceramics. J Am Ceram Soc 94:782-87 CrossRef
    31. Rado GT, Ferrari JM, Maisch WG (1984) Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4. Phys Rev B 29:4041-048 CrossRef
    32. Subramanian MA, He T, Chen JZ, Rogado NS, Calvarese TG, Sleight AW (2006) Giant room-temperature magnetodielectric response in the electronic ferroelectric LuFe2O4. Adv Mater 18:1737-739 CrossRef
    33. Tang MH, Xiao YG, Jiang B, Hou JW, Li JC, He J (2011) The giant dielectric tunability effect in bulk Y2NiMnO6 around room temperature. Appl Phys A 105:679-83 CrossRef
    34. Cai ZH, Kubicek M, Fleig J, Yildiz B (2012) Chemical heterogeneities on La0.6Sr0.4CoO3?em class="a-plus-plus">δ thin films—correlations to cathode surface activity and stability. Chem Mater 24:1116-127 CrossRef
    35. Vaz CAF, Prabhakaran D, Altman EI, Henrich VE (2009) Experimental study of the interfacial cobalt oxide in Co3O4/α-Al2O3 (0001) epitaxial films. Phys Rev B 80:155457 CrossRef
  • 作者单位:J. Su (1)
    J. T. Zhang (2)
    X. M. Lu (2)
    C. J. Lu (1)
    J. He (2)
    Q. C. Li (1)
    J. Zhou (2)
    J. S. Zhu (2)

    1. College of Physics Science, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, Qingdao University, Qingdao, 266071, People’s Republic of China
    2. National Laboratory of Solid State Microstructures, Physics School, Nanjing University, Nanjing, 210093, People’s Republic of China
  • ISSN:1573-4803
文摘
The ceramic TbCo0.5Mn0.5O3.07 of double-perovskite structure was prepared by solid-state reaction. Its crystal structure and magnetic and dielectric properties were investigated by first-principles calculations and experimental observations. TbCo0.5Mn0.5O3.07 possesses a monoclinic structure with P21/n space group. The c axis is the easy-magnetization axis, and it is largely caused by Co2+ anisotropy. The predominant valence states are Mn4+ and Co2+, with a small amount of Co3+ coexisting with Co2+. The ordering of Mn4+ and Co2+ results in ferromagnetic Mn4+–Co2+ interactions. Partial disorder of the B-site creates antiferromagnetic Co2+–O–Co2+ or Mn4+–O–Mn4+ interactions. The origin of metamagnetism is associated with the coexistence of antiferromagnetic and ferromagnetic phases. The magnetic exchange bias is strongly dependent on magnetic field, which is considered to be related to the metamagnetic behavior. The possibility of spin glass behavior is excluded by AC susceptibility measurements. The two observed dielectric relaxations are caused by electrons hopping between Co2+ and Mn4+ and between Co3+ and Mn4+.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700