Maximization of operating frequency ranges of hyperbolic elastic metamaterials by topology optimization
详细信息    查看全文
  • 作者:Joo Hwan Oh ; Young Kwan Ahn…
  • 关键词:Hyperbolic elastic metamaterial ; Topology optimization ; Maximizing operating frequency range ; Multi ; model analysis
  • 刊名:Structural and Multidisciplinary Optimization
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:52
  • 期:6
  • 页码:1023-1040
  • 全文大小:3,339 KB
  • 参考文献:Ao X, Chan CT (2008) Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys Rev E 77:025601CrossRef
    Bends酶e MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197鈥?24CrossRef
    Bends酶e MP, Sigmund O (2003) Topology optimization, Springer
    Brillouin L (1946) Wave propagation in periodic structures. Dover, New YorkMATH
    Chiang TY, Wu LY, Tsai CN, Chen LW (2011) A multilayered acoustic hyperlens with acoustic metamaterials. Appl Phys A 103:355鈥?59CrossRef
    Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization. Springer, New York
    Diaz AR, Sigmund O (2010) A topology optimization method for design of negative permeability metamaterials. Struct Multidiscip Optim 41:163鈥?77CrossRef MathSciNet MATH
    D眉hring MB, Sigmund O, Feurer T (2010) Design of photonic bandgap fibers by topology optimization. Opt Soc Am B 27:51鈥?8CrossRef
    Haber RB, Jog CS, Bendsoe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Opt 11:1鈥?2CrossRef
    Huang HH, Sun CT, Huang GL (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47:610鈥?17CrossRef MathSciNet
    Huang Y, Liu S, Zhao J (2013) Optimal design of two-dimensional band-gap materials for uni-directional wave propagation. Struct Multidiscip Optim 48:487鈥?99CrossRef MathSciNet
    Hussein MI (2004) Dynamics of banded materials and structures: analysis, design and computation in multiple scales. Dissertation, University of Michigan
    Jacob Z, Alekseyev LV, Narimanov EE (2006) Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt Exp 14:8247鈥?256CrossRef
    Jang GW, Jeong JH, Kim YY, Sheen DW, Park CJ, Kim MN (2003) Checkerboard-free topology optimization using non-conforming finite elements. Int J Numer Methods Eng 57:1717鈥?735CrossRef MATH
    Kildishev AV, Narimanov EE (2007) Impedance-matched hyperlens. Opt Lett 32:3432鈥?434CrossRef
    Kim SI, Kim YY (2014) Topology optimization of planar linkage mechanisms. Int J Numer Methods Eng 98:265鈥?86CrossRef
    Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71:2022鈥?025CrossRef
    Langlet P, Hladky-Hennion AC, Decarpigny JN (1995) Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method. J Acoust Soc Am 98:2792鈥?800CrossRef
    Lee J, Kikuchi N (2010) Structural topology optimization of electrical machinery to maximize stiffness with body force distribution. IEEE Trans Magn 46:3790鈥?794CrossRef
    Lee H, Liu Z, Xiong Y, Sun C, Zhang X (2007) Development of optical hyperlens for imaging below the diffraction limit. Opt Exp 15:15886鈥?5891CrossRef
    Lee HJ, Kim HW, Kim YY (2011) Far-field subwavelength imaging for ultrasonic elastic waves in a plate using an elastic hyperlens. Appl Phys Lett 98:241912CrossRef
    Li J, Fok L, Yin X, Bartal G, Zhang X (2009) Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater 8:931鈥?34CrossRef
    Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2010) Far-field optical hyperlens magnifying Sub-diffraction-limited objects. Science 315:1686CrossRef
    Lu D, Liu Z (2012) Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun 3:1205. doi:10.鈥?038/鈥媙comms2176
    Lu L, Yamamoto T, Otomori M, Yamada T, Izui K, Nishiwaki S (2013) Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance. Finite Elem Anal Des 72:1鈥?2CrossRef MathSciNet MATH
    Oh JH (2014) Sub-wavelength resolution in ultrasonic waves by hyperbolic metamaterials. Dissertation, Seoul National University
    Oh JH, Seung HM, Kim YY (2014) A truly hyperbolic elastic metamaterial lens. Appl Phys Lett 104:073503CrossRef
    Otomori M, Yamada T, Izui K, Nishiwaki S, Andkj忙r J (2012) A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials. Comput Methods Appl Mech Eng 237鈥?40:192鈥?11CrossRef
    Rho J et al (2010) Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat Commun 1:143. doi:10.鈥?038/鈥媙comms1148 CrossRef
    Rupp CJ, Evgrafov A, Maute K, Dunn ML (2007) Design of phononic materials/structures for surface wave devices using topology optimization. Struct Multidiscip Optim 34:111鈥?21CrossRef MathSciNet MATH
    Salandrino A, Engheta N (2006) Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys Rev B 74:075103CrossRef
    Sigalas M, Economou EN (1993) Band structure of elastic waves in two dimesional systems. Solid State Commun 86:141鈥?43CrossRef
    Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans R Soc Lond A 361:1001鈥?019CrossRef MathSciNet MATH
    Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359鈥?73CrossRef MathSciNet MATH
    Wang W et al (2008) Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt Express 16:21142鈥?1148CrossRef
    Xiong Y, Liu Z, Zhang X (2009) A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl Phys Lett 94:203108CrossRef
  • 作者单位:Joo Hwan Oh (1)
    Young Kwan Ahn (1)
    Yoon Young Kim (1)

    1. Institute of Advanced Machines and Design, School of Mechanical and Aerospace Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-744, Korea
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Computer-Aided Engineering and Design
    Numerical and Computational Methods in Engineering
    Engineering Design
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1615-1488
文摘
Hyperbolic elastic metamaterials developed for sub-wavelength resolution allow wave propagation in the radial direction but prohibit wave propagation in the circumferential direction. Recently, a two-dimensional elastic metamaterial truly exhibiting the hyperbolic behavior has been realized and also experimented but there is a practically important design issue that its operating frequency range should be widened. Motivated by this need, the present investigation aims to set up a topology optimization formulation to maximize the operating frequency range. Because different wave physics are involved along the circumferential and radial directions, the topology optimization requires the extraction of the key physical phenomena along the two different directions. In doing so, the wave physics occurring in the hyperbolic elastic metamaterial is analyzed by using equivalent discrete models and the findings from the analysis are used to set up a topology optimization problem. The topology optimization that maximizes the operating frequency range of the hyperbolic elastic metamaterial is newly formulated by using the finite element method. After the metamaterial configuration maximizing the frequency range is found, the mechanics hidden in the optimized configuration is explained in some details by using analytic mass-spring model. Keywords Hyperbolic elastic metamaterial Topology optimization Maximizing operating frequency range Multi-model analysis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700