Electrochemical Evaluation of Pt-Based Binary Catalysts on Various Supports for the Direct Methanol Fuel Cell
详细信息    查看全文
  • 作者:L. Khotseng ; A. Bangisa ; R. M. Modibedi ; V. Linkov
  • 关键词:Direct methanol fuel cell ; Multi walled carbon nanotubes ; Metal oxides ; Pt ; based binary catalysts ; Oxygen reduction reaction ; Methanol crossover
  • 刊名:Electrocatalysis
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:7
  • 期:1
  • 页码:1-12
  • 全文大小:2,409 KB
  • 参考文献:1.H.Y. Yana, J. Inukai, H. Uchida, M. Watanabe, P.K. Babu, T. Kobayashi, J.H. Chung, E. Oldfield, A. Wieckowski, Phys. Chem. Chem. Phys. 8, 4932 (2006)CrossRef
    2.S.S. Kocha, Electrochemical degradation: electrocatalyst and support durability, in Polymer Electrolyte Fuel Cell Degradation, ed. by M.M. Mench, E.C. Kumbur, T.N. Veziroglu (Academic, Boston, 2012), p. 89CrossRef
    3.G.Q. Lu, C.Y. Wang, J. Power Sources 134, 33 (2004)CrossRef
    4.K. Sundmarcher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E.D. Giles, Chem. Eng. Sci. 56, 333 (2001)CrossRef
    5.T.S. Zhao, W.W. Yang, R. Chen, Q.X. Wu, J. Power Sources 195, 3451 (2010)CrossRef
    6.H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, J. Power Sources 155, 95 (2006)CrossRef
    7.Garche J, Encyclopedia of electrochemical power sources, ed. by T.S. Zhao, C. Xu (Elsevier, ISBN-13: 978-0-444-52093-7, 2009), p. 381
    8.S.K. Kamarudin, F. Achmad, W.R.W. Daud, Int. J. Hydrogen Energy 34, 6902 (2009)CrossRef
    9.D.H. Lim, D.H. Choi, W.D. Lee, H.I. Lee, Appl. Catal. B Environ. 89, 484 (2009)CrossRef
    10.T. Toda, H. Igarashi, M. Watanabe, J. Electroanal. Chem. 460, 258 (1999)CrossRef
    11.Garche J, Encyclopedia of electrochemical power sources, ed. by SH Bergens, MEP Markiewicz, (Elsevier, ISBN-13: 978-0-444-52093-7, 2009), p. 616
    12.R. Balgis, G.M. Anilkumar, S. Sago, T. Ogi, K. Okuyama, J. Power Sources 203, 26 (2012)CrossRef
    13.C.M. Chen, M. Chen, Y.W. Peng, H.W. Yu, C.F. Chen, Thin Solid Films 498, 202 (2006)CrossRef
    14.H.A. Gasteiger, S.S. Kocha, B. Sompappli, F.T. Wagner, Appl. Catal. B Environ. 56, 9 (2005)CrossRef
    15.J.B. Fernandas, in Catalysis, selected applications, ed. by B. Viswanathan (Narosa Publishing House, 2007), p 9
    16.K.T. Jeng, C.C. Chien, N.Y. Hsu, S.C. Yern, S.D. Chiou, S.H. Lin, W.M. Huang, J. Power Sources 160, 97 (2006)CrossRef
    17.S. Rojas, F.J. Garcia, S. Jaras, M.V. Huerta, J.L.F. Fierro, M. Boutonnet, Appl. Catal. A Gen. 285, 24 (2005)CrossRef
    18.R.P. Raffaelle, B.J. Landi, J.D. Harris, S.G. Bailey, A.F. Hepp, Mater. Sci. Eng. B 116, 233 (2005)CrossRef
    19.E. Antolini, E.R. Gonzalez, Solid State Ionics 180, 746 (2009)CrossRef
    20.S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, J. Power Sources 176, 444 (2008)CrossRef
    21.F. Rodrìguez-Reinosa, Carbon 36, 159 (1998)CrossRef
    22.B.L. Dutrow, C.M. Clark, Geochemical instrumentation and analysis. serc.carleton.edu/research_education/geochemsheet/techniques/XRD.html
    23.Y.-H. Cho, O.-H. Kim, D.Y. Chung, H. Choe, Y.-H. Cho, Y.-E. Sun, Appl. Catal. B Environ. 154-155, 309 (2014)CrossRef
    24.L. Chen, J. Zang, Y. Wang, L. Bian, Electrochim. Acta 53, 3442 (2008)CrossRef
    25.Y. Wang, J. Zang, L. Dong, H. Pan, Y. Yuan, Y. Wang, Electrochim. Acta 113, 583 (2013)CrossRef
    26.N.Y. Hsu, C.C. Chien, K.T. Jeng, Appl. Catal. B Environ. 84, 196 (2008)CrossRef
    27.S.M.S. Kumar, N. Hdyatai, J.S. Herrero, S. Irusta, K. Scott, Int. J. Hydrogen Energy 36, 5453 (2011)CrossRef
    28.E. Antolini, Appl. Catal. B Environ. 88, 1 (2009)CrossRef
    29.J. Prabhuram, T.S. Zhao, C.W. Wong, J.W. Guo, J. Power Sources 134, 1 (2004)CrossRef
    30.H. Lipson, H. Steeple, Interpretation of X-Ray Powder Diffraction Patterns (Macmillan and Company, Ltd, London, 1970), pp. 93–94
    31.D.M. Han, Z.P. Gao, R. Zeng, C.J. Kim, Y.Z. Meng, H.K. Liu, Int. J. Hydrogen Energy 34, 2426 (2009)CrossRef
    32.M. Zhu, G. Sun, Q. Xin, Electrochim. Acta 54, 1511 (2009)CrossRef
    33.J.H. Han, J.H. Han, H.T. Liu, J. Power Sources 164, 166 (2007)CrossRef
    34.E. Antolini, T. Lopez, E.R. Gonzalez, J. Alloys Compd. 461, 253 (2008)CrossRef
    35.C.T. Hsieh, J.Y. Lin, S.Y. Yang, Phys. E. 41, 373 (2009)CrossRef
    36.E. Yoo, T. Okada, T. Kizuka, J. Nakamura, J. Power Sources 180, 221 (2008)CrossRef
    37.E. Antolini, J.R.C. Salgado, E.R. Gonzalez, J. Electroanal. Chem. 580, 145 (2006)CrossRef
    38.S.Y. Huang, P. Ganesan, B.N. Popov, Appl. Catal. B Environ. 102, 71 (2011)CrossRef
    39.M. Carmo, A.R. dos Santos, J.G.R. Poco, M. Linardi, J. Power Sources 173, 860 (2007)CrossRef
    40.C.M. Chen, M. Chen, Y.W. Peng, H.W. Yu, C.F. Chen, Thin Solid Films 498, 202 (2006)CrossRef
    41.J. Chen, Q. Chen, Q. Ma, J. Colloid Interface Sci. 370, 32 (2012)CrossRef
    42.N.Y. Hsu, C.C. Chien, K.T. Jeng, Appl. Catal. B Environ. 84, 196 (2008)CrossRef
    43.G. An, P. Yu, L. Mao, Z. Liu, S. Miao, Z. Miao, K. Ding, Carbon 45, 536 (2002)CrossRef
    44.W.Z. Li, C.H. Liang, W.J. Zhou, J.S. Qiu, Z.H. Zhou, G.Q. Sun, J. Phys. Chem. B 107, 6292 (2003)CrossRef
    45.S. Kim, H.J. Sohn, S. Park, Curr. Appl. Phys. 10, 1142 (2010)CrossRef
    46.M. Williams, L. Khotseng, Q. Naidoo, L. Petric, A. Nachaev, V. Linkov, S. Afr. J. Sci. 105, 285 (2009)
    47.M. Carmo, A.R. dos Santos, J.G.R. Poco, M. Linardi, J. Power Sources 173, 860 (2007)CrossRef
    48.A.L. Ocampo, M. Miranda-Hernández, J. Morgado, J.A. Montaya, P.J. Sebastian, J. Power Sources 160, 915 (2006)CrossRef
    49.J. Prabhuram, T.S. Zhao, Z.X. Liang, R. Chen, Electrochim. Acta 52, 2649 (2007)CrossRef
    50.A.O. Neto, T.P.R. Vasconcelos, R.W.R.V. Da Silva, M. Linardi, E.V. Spinace, J. Appl. Electrochem. 35, 193 (2005)CrossRef
    51.M. Zhu, G. Sun, Q. Xin, Electrochim. Acta 54, 1511 (2009)CrossRef
    52.F. Colmati, E. Antolini, E.R. Gonzalez, Electrochim. Acta 50, 5496 (2005)CrossRef
    53.Y. Shao, G. Yin, Y. Gao, J. Power Sources 171, 558 (2007)CrossRef
    54.E. Antolini, T. Lopez, E.R. Gonzalez, J. Alloys Compd. 461, 253 (2008)CrossRef
    55.C. Jehabharathi, P. Venkateshkumar, J. Mathiyarasu, K.L.N. Phani, Electrochim. Acta 54(2), 448 (2008)CrossRef
    56.C.J. Tseng, S.T. Lo, S.C. Lo, P.P. Chu, Mater. Chem. Phys. 100, 385 (2006)CrossRef
    57.H. Li, G. Sun, L. Cao, L. Jiang, Q. Xin, Electrochim. Acta 52, 6622 (2007)CrossRef
    58.S.Y. Huang, P. Ganesan, B.N. Popov, Appl. Catal. B Environ. 102, 71 (2011)CrossRef
    59.V.A. Paganin, E. Sitta, T. Iwasita, W. Vielstich, J. Appl. Electrochem. 35, 1239 (2005)CrossRef
  • 作者单位:L. Khotseng (1)
    A. Bangisa (1)
    R. M. Modibedi (2)
    V. Linkov (1)

    1. Faculty of Science, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
    2. Energy Materials, Materials Science and Manufacturing, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Electrochemistry
    Physical Chemistry
    Energy Technology
  • 出版者:Springer New York
  • ISSN:1868-5994
文摘
Multi-walled carbon nanotubes (MWCNTs), TiO2, MoO2, and carbon black Vulcan XC-72 were investigated as supports for PtRu and PtSn catalysts. X-ray diffraction (XRD) confirmed that all electrocatalysts examined display characteristic patterns similar to that of the Pt/C electrocatalyst, an indication that the catalysts have predominantly the Pt face-centered cubic (fcc) crystal structure. High-resolution transmission electron microscopy (HRTEM) images showed spherical PtRu and PtSn nanoparticles with a narrow particle size distribution, dispersed on the support materials. The metal loading for the prepared electrocatalyst was estimated using energy-dispersive X-ray spectroscopy (EDS), and it was observed to be closest to that of the catalysts supported on Vulcan XC-72. Cyclic voltammograms showed PtSn/C to be the most active, as it possessed a higher electroactive surface area than that of the other catalysts, followed by Pt/C > PtRu/MWCNT > PtRu/C > PtSn/MWCNT > PtSn/MoO2 > PtRu/MoO2 > PtSn/TiO2 > PtRu/TiO2. It was also observed that catalysts supported on MWCNTs were more active than those supported on metal oxides. Furthermore, catalysts supported on MWCNTs proved to be more stable than all the other supported catalysts examined. Therefore, MWCNTs have been proven in this study to be the best material for supporting electrocatalysts for direct methanol fuel cells. Keywords Direct methanol fuel cell Multi walled carbon nanotubes Metal oxides Pt-based binary catalysts Oxygen reduction reaction Methanol crossover

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700