Liquid feed passive direct methanol fuel cell: challenges and recent advances
详细信息    查看全文
  • 作者:Naveen K. Shrivastava ; Shashikant B. Thombre ; Rajkumar B. Chadge
  • 关键词:Passive direct methanol fuel cell ; Liquid feed ; Mass transfer ; Heat transfer ; Durability ; Cost
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:22
  • 期:1
  • 页码:1-23
  • 全文大小:1,504 KB
  • 参考文献:1.Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13:2430–2440CrossRef
    2.Stambouli AB (2011) Fuel cells: the expectations for an environmental-friendly and sustainable source of energy. Renew Sustain Energy Rev 15:4507–4520CrossRef
    3.Hart D (2000) Sustainable energy conversion: fuel cells—the competitive option? J Power Sources 86:23–27CrossRef
    4.Pollet BG, Staffell I, Shang JL (2012) Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects. Electrochim Acta 84:235–249CrossRef
    5.Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sustain Energy Rev 16:981–989CrossRef
    6.Lucia U (2014) Overview on fuel cells. Renew Sustain Energy Rev 30:164–169CrossRef
    7.Spakovsky MR, Olsommer B (2002) Fuel cell systems and system modelling and analysis perspectives for fuel cell development. Energy Convers Manag 43:1249–1257CrossRef
    8.Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRef
    9.Acres GJK (2001) Recent advances in fuel cell technology and its applications. J Power Sources 100:60–66CrossRef
    10.Shrivastava NK, Thombre SB, Wasewar KL (2014) A real-time simulating non-isothermal mathematical model for the passive feed direct methanol fuel cell. Int J Green Energ. doi:10.​1080/​15435075.​2014.​916220
    11.Douvartzides S, Coutelieris F, Tsiakaras P (2003) Energy and exergy analysis of a solid oxide fuel cell plant fueled by ethanol and methane. Ionics 9:293–296CrossRef
    12.Hu A, Zhou J, Chen B, Wu Y (2015) The effect of pressure gradient on anode micro modeling of solid oxide fuel cell. Ionics 21:2005–2017CrossRef
    13.Giddey S, Ciacchi FT, Badwal SPS (2005) Fuel quality and operational issues for polymer electrolyte membrane (PEM) fuel cells. Ionics 11:1–10CrossRef
    14.Nachiappan N, ParuthimalKalaignan G, Sasikumar G (2013) Effect of nitrogen and carbon dioxide as fuel impurities on PEM fuel cell performances. Ionics 19:351–354CrossRef
    15.Padmavathi R, Sangeetha D (2013) Design of novel SPEEK-based proton exchange membranes by self-assembly method for fuel cells. Ionics 19:1423–1436CrossRef
    16.Demirci UB (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sources 169:239–246CrossRef
    17.Qian W, Wilkinson DP, Shen J, Wang H, Zhang J (2006) Architecture for portable direct liquid fuel cells. J Power Sources 154:202–213CrossRef
    18.Jayakumar A, Sethu S, Ramos M, Robertson J, Al-Jumaily A (2015) A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics 21:1–18CrossRef
    19.Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296CrossRef
    20.Kim J, Choi K, Kang S, Kim J (2011) Direct methanol fuel cell. US Patent 7939217 B2
    21.Dine LLV, Maricle DL (1996) Direct methanol oxidation polymer electrolyte membrane power system. US Patent 5573866 A
    22.Okamoto T (1998) Direct methanol type fuel cell. US Patent 5723228 A
    23.Surampudi S, Frank HA, Narayanan SR, Chun W, Jeffries-Nakamura B, Kindler A, Halpert G (1998) Direct methanol feed fuel cell and system. US Patent 5773162 A
    24.Luft G, Pantel K, Waidhas M (2003) Direct methanol fuel cell (DMFC). US Patent 6509112 B1
    25.Kamaruddin MZF, Kamarudin SK, Masdar MS, Daud WRW (2015) Investigating design parameter effect on the methanol flux in the passive storage of a direct methanol fuel cell. Int J Hydrogen Energ. doi:10.​1016/​j.​ijhydene.​2015.​06.​071
    26.Falcão DS, Pereira JP, Rangel CM, Pinto AMFR (2015) Development and performance analysis of a metallic passive micro-direct methanol fuel cell for portable applications. Int J Hydrog Energy 40:5408–5415CrossRef
    27.BahavanPalani P, Kannan R, Rajashabala S, Rajendran S, Velraj G (2015) Effect of nano-composite on polyvinyl alcohol-based proton conducting membrane for direct methanol fuel cell applications. Ionics 21:507–513CrossRef
    28.Birry L, Bock C, Xue X, McMillan R, MacDougall B (2009) DMFC electrode preparation, performance and proton conductivity measurements. J Appl Electrochem 39:347–360CrossRef
    29.Song SQ, Zhou WJ, Li WZ, Sun G, Xin Q, Kontou S, Tsiakaras P (2004) Direct methanol fuel cells: methanol crossover and its influence on single DMFC performance. Ionics 10:458–462CrossRef
    30.Nordlund J, Roessler A, Lindbergh G (2002) The influence of electrode morphology on the performance of a DMFC anode. J Appl Electrochem 32:259–265CrossRef
    31.Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrogen Energy 34:6902–6916CrossRef
    32.Li X, Faghri A (2013) Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions. J Power Sources 226:223–240CrossRef
    33.Shrivastava NK, Thombre SB, Mallick RK (2014) Effect of diffusion layer compression on passive DMFC performance. Electrochim Acta 149:167–175CrossRef
    34.Shrivastava NK, Thombre SB, Wasewar KL (2013) Nonisothermal mathematical model for performance evaluation of passive direct methanol fuel cells. Journal of Energy Engineering 139:266–274CrossRef
    35.Mallick RK, Thombre SB, Shrivastava NK (2015) A critical review of the current collector for passive direct methanol fuel cells. J Power Sources 285:510–529CrossRef
    36.Hashemi R, Yousefi S, Faraji M (2015) Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell. Ionics. doi:10.​1007/​s11581-015-1479-y
    37.Yousefi S, Shakeri M, Sedighi K (2013) The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell. Ionics 19:1637–1647CrossRef
    38.Yousefi S, Zohoor M (2013) Investigating the effect of operating parameters on the open circuit voltage of a passive DMFC. Ionics 19:1195–1201CrossRef
    39.Yousefi S, Ganji DD (2012) Experimental investigation of a passive direct methanol fuel cell with 100 cm2 active areas. Electrochim Acta 85:693–699CrossRef
    40.Yousefi S, Zohoor M (2014) Conceptual design and statistical overview on the design of a passive DMFC single cell. Int J Hydrogen Energy 39:5972–5980CrossRef
    41.Scott K, Taama WM, Argyropoulos P (1999) Engineering aspects of the direct methanol fuel cell system. J Power Sources 79:43–59CrossRef
    42.Yuan W, Zhou B, Deng J, Tang Y, Zhang Z, Li Z (2014) Overview on the developments of vapor-feed direct methanol fuel cells. Int J Hydrogen Energy 39:6689–6704CrossRef
    43.Faghri A, Li X, Bahrami H (2012) Recent advances in passive and semi passive direct methanol fuel cells. Int J Thermal Sciences 62:12–18CrossRef
    44.Chen R, Zhao TS, Yang WW, Xu C (2008) Two-dimensional two-phase thermal model for passive direct methanol fuel cells. J Power Sources 175:276–287CrossRef
    45.Achmad F, Kamarudin SK, Daud WRW, Majlan EH (2011) Passive direct methanol fuel cells for portable electronic devices. Applied Energy 88:1681–1689CrossRef
    46.Shrivastava NK, Thombre SB, Motghare RV (2014) Wire mesh current collectors for passive direct methanol fuel cells. J Power Sources 272:629–638CrossRef
    47.Tsujiguchi T, Abdelkareem MA, Kudo T, Nakagawa N, Shimizu T, Matsuda M (2010) Development of a passive direct methanol fuel cell stack for high methanol concentration. J Power Sources 195:5975–5979CrossRef
    48.Abdelkareem MA, Yoshitoshi T, Tsujiguchi T, Nakagawa N (2010) Vertical operation of passive direct methanol fuel cell employing a porous carbon plate. J Power Sources 195:1821–1828CrossRef
    49.Li X, Faghri A, Xu C (2010) Water management of the DMFC passively fed with a high-concentration methanol solution. Int J Hydrogen Energy 35:8690–8698CrossRef
    50.Nakagawa N, Abdelkareem MA, Sekimoto K (2006) Control of methanol transport and separation in a DMFC with a porous support. J Power Sources 160:105–115CrossRef
    51.Abdelkareem MA, Nakagawa N (2006) DMFC employing a porous plate for an efficient operation at high methanol concentrations. J Power Sources 162:114–123CrossRef
    52.Wu QX, Zhao TS, Chen R, Yang WW (2010) A micro fluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels. J Micromech Microeng 20:0450141–0450149
    53.Park YC, Kim DH, Lim S, Kim SK, Peck DH, Jung DH (2012) Design of a MEA with multi-layer electrodes for high concentration methanol DMFCs. Int J Hydrogen Energy 37:4717–4727CrossRef
    54.Yuan W, Tang Y, Yang X, Wan Z (2012) Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell. Int J Hydrogen Energy 37:13510–13521CrossRef
    55.Yuan W, Tang Y, Yang X (2013) High-concentration operation of a passive air
    eathing direct methanol fuel cell integrated with a porous methanol barrier. Renew Energy 50:741–746CrossRef
    56.Yuan W, Deng J, Zhang Z, Yang X, Tang Y (2014) Study on operational aspects of a passive direct methanol fuel cell incorporating an anodic methanol barrier. Renew Energy 62:640–648CrossRef
    57.Rice J, Faghri A (2008) Thermal and start-up characteristics of a miniature passive liquid feed DMFC system, including continuous/discontinuous phase limitations. J Heat Transfer 130:6200101–6200111CrossRef
    58.Prakash S, Mustain W, Kohl PA (2008) Carbon dioxide vent for direct methanol fuel cells. J Power Sources 185:392–400CrossRef
    59.Prakash S, Kohl PA (2009) Performance of carbon dioxide vent for direct methanol fuel cells. J Power Sources 192:429–434CrossRef
    60.Liu JG, Zhao TS, Chen R, Wong CW (2005) The effect of methanol concentration on the performance of a passive DMFC. Electrochem Commun 7:288–294CrossRef
    61.Xu C, Faghri A, Li X, Ward T (2010) Methanol and water crossover in a passive liquid-feed direct methanol fuel cell. Int J Hydrogen Energy 35:1769–1777CrossRef
    62.Lai QZ, Yin GP, Wang ZB, Du CY, Zuo PJ, Cheng XQ (2008) Influence of methanol crossover on the fuel utilization of passive direct methanol fuel cell. Fuel Cells 8:399–403CrossRef
    63.Jewett G, Faghri A, Xiao B (2009) Optimization of water and air management systems for a passive direct methanol fuel cell. Int J Heat and Mass Transfer 52:3564–3575CrossRef
    64.Rice J, Faghri A (2006) A transient, multi-phase and multi-component model of a new passive DMFC. Int J Heat and Mass Transfer 49:4804–4820CrossRef
    65.Liu JG, Zhao TS, Liang ZX, Chen R (2006) Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. J Power Sources 153:61–67CrossRef
    66.Chen R, Zhao TS (2007) Porous current collectors for passive direct methanol fuel cells. Electrochim Acta 52:4317–4324CrossRef
    67.Gholami O, Imen SJ, Shakeri M (2013) Effect of non-uniform parallel channel on performance of passive direct methanol fuel cell. Int J Hydrogen Energy 38:3395–3400CrossRef
    68.Chen M, Chen J, Li Y, Huang Q, Zhang H, Xue X, Zou Z, Yang H (2012) Cathode catalyst layer with stepwise hydrophobicity distribution for a passive direct methanol fuel cell. Energy Fuel 26:1178–1184CrossRef
    69.Wang Z, Zhang X, Nie L, Zhang Y, Liu X (2014) Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment. Applied Energy 126:107–112CrossRef
    70.Hashim N, Kamarudin SK, Daud WRW (2009) Design, fabrication and testing of a PMMA-based passive single-cell and a multi-cell stack micro-DMFC. Int J Hydrogen Energy 34:8263–8269CrossRef
    71.Lai QZ, Yin GP, Zhang J, Wang ZB, Cai KD, Liu P (2008) Influence of cathode oxygen transport on the discharging time of passive DMFC. J Power Sources 175:458–463CrossRef
    72.Chan YH, Zhao TS, Chen R, Xu C (2008) A small mono-polar direct methanol fuel cell stack with passive operation. J Power Sources 178:118–124CrossRef
    73.Guo H, Chen YP, Xue YQ, Ye F, Ma CF (2013) Three-dimensional transient modeling and analysis of two-phase mass transfer in air
    eathing cathode of a fuel cell. Int J Hydrogen Energy 38:11028–11037CrossRef
    74.Bahrami H, Faghri A (2010) Transport phenomena in a semi-passive direct methanol fuel cell. Int J Heat and Mass Transfer 53:2563–2578CrossRef
    75.Zhao TS, Xu C, Chen R, Yang WW (2009) Mass transport phenomena in direct methanol fuel cells. Int J Hydrog Energy 35:275–292
    76.Xu C, Faghri A (2010) Water transport characteristics in a passive liquid-feed DMFC. Int J Heat Mass Transfer 53:1951–1966CrossRef
    77.Oliveira VB, Rangel CM, Pinto AMFR (2011) One-dimensional and non-isothermal model for a passive DMFC. J Power Sources 196:8973–8982CrossRef
    78.Yang WW, Zhao TS (2009) Numerical investigations of effect of membrane electrode assembly structure on water crossover in a liquid-feed direct methanol fuel cell. J Power Sources 188:433–446CrossRef
    79.Bahrami H, Faghri A (2013) Review and advances of direct methanol fuel cells: part II: modeling and numerical simulation. J Power Sources 230:303–320CrossRef
    80.Cao J, Chen M, Chen J, Wang S, Zou Z, Li Z, Akins DL, Yang H (2010) Double microporous layer cathode for membrane electrode assembly of passive direct methanol fuel cells. Int J Hydrog Energy 35:4622–4629CrossRef
    81.Jewett G, Guo Z, Faghri A (2007) Water and air management systems for a passive direct methanol fuel cell. J Power Sources 168:434–446CrossRef
    82.Kim HK, Oh JM, Kim JH, Chang H (2006) Membrane electrode assembly for passive direct methanol fuel cells. J Power Sources 162:497–501CrossRef
    83.Cao J, Wang L, Song L, Xu J, Wang H, Chen Z, Huang Q, Yang H (2014) Novel cathodal diffusion layer with mesoporous carbon for the passive direct methanol fuel cell. Electrochim Acta 118:163–168CrossRef
    84.Chen M, Wang S, Zou Z, Yuan T, Li Z, Akins DL, Yang H (2010) Fluorination of Vulcan XC-72R for cathodic microporous layer of passive micro direct methanol fuel cell. J Appl Electrochem 40:2117–2124CrossRef
    85.Peled E, Blum A, Aharon A, Philosoph M, Lavi Y (2003) Novel approach to recycling water and reducing water loss in DMFCs. Electrochemical and Solid-State Letters 6:268–271CrossRef
    86.Xue YQ, Guo H, Shang HH, Ye F, Ma CF (2015) Simulation of mass transfer in a passive direct methanol fuel cell cathode with perforated current collector. Energy 81:501–510CrossRef
    87.Chen R, Zhao TS (2007) A novel electrode architecture for passive direct methanol fuel cells. Electrochem Commun 9:718–724CrossRef
    88.Reshetenko TV, Kim HT, Kweon HJ (2007) Cathode structure optimization for air
    eathing DMFC by application of pore-forming agents. J Power Sources 171:433–440CrossRef
    89.Chetty R, Scott K, Kundu S, Muhler M (2010) Optimization of mesh-based anodes for direct methanol fuel cells. Journal of Fuel Cell Science and Technology 7:310111–310119CrossRef
    90.Kim D, Cho EA, Hong SA, Oh IH, Ha HY (2004) Recent progress in passive direct methanol fuel cells at KIST. J Power Sources 130:172–177CrossRef
    91.Lundin MD, McCready MJ (2011) High pressure anode operation of direct methanol fuel cells for carbon dioxide management. J Power Sources 196:5583–5590CrossRef
    92.Yuan W, Tang Y, Yang X, Liu B, Wan Z (2012) Structural diversity and orientation dependence of a liquid-fed passive air
    eathing direct methanol fuel cell. Int J Hydrog Energy 37:9298–9313CrossRef
    93.Yang WM, Chou SK, Shu C (2007) Effect of current-collector structure on performance of passive micro direct methanol fuel cell. J Power Sources 164:549–554CrossRef
    94.Chen R, Zhao TS, Liu JG (2006) Effect of cell orientation on the performance of passive direct methanol fuel cells. J Power Sources 157:351–357CrossRef
    95.Liu W, Cai W, Liu C, Sun S, Xing W (2015) Magnetic coupled passive direct methanol fuel cell: promoted CO2 removal and enhanced catalyst utilization. Fuel 139:308–313CrossRef
    96.Chen R, Zhao TS (2007) Performance characterization of passive direct methanol fuel cells. J Power Sources 167:455–460CrossRef
    97.Chen R, Zhao TS (2005) Mathematical modeling of a passive-feed DMFC with heat transfer effect. J Power Sources 152:122–130CrossRef
    98.Zhao TS, Chen R, Yang WW, Xu C (2009) Small direct methanol fuel cells with passive supply of reactants. J Power Sources 191:185–202CrossRef
    99.Wang L, Zhang Y, An Z, Huang S, Zhou Z, Liu X (2013) Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect. Energy 58:283–295CrossRef
    100.Xiao B, Faghri A (2008) Transient modeling and analysis of a passive liquid-feed DMFC. Int J Heat and Mass Transfer 51:3127–3143CrossRef
    101.Guo Z, Faghri A (2008) Development of a 1 W passive DMFC. Int Communications in Heat and Mass Transfer 35:225–239CrossRef
    102.Bahrami H, Faghri A (2011) Exergy analysis of a passive direct methanol fuel cell. J Power Sources 196:1191–1204CrossRef
    103.Kho BK, Bae B, Scibioh MA, Lee J, Ha HY (2005) On the consequences of methanol crossover in passive air
    eathing direct methanol fuel cells. J Power Sources 142:50–55CrossRef
    104.Basri S, Kamarudin SK, Daud WRW, Yaakub Z, Ahmad MM, Hashim N, Hasran UA (2009) Unsteady-state modelling for a passive liquid-feed DMFC. Int J Hydrog Energy 34:5759–5769CrossRef
    105.Gholami O, JavadImen S, Shakeri M (2015) Effect of anode and cathode flow field geometry on passive direct methanol fuel cell performance. ElectrochimicaActa 158:410–417CrossRef
    106.Paust N, Krumbholz S, Munt S, Muller C, Koltay P, Zengerle R, Ziegler C (2009) Self-regulating passive fuel supply for small direct methanol fuel cells operating in all orientations. J Power Sources 192:442–450CrossRef
    107.Shimizu T, Momma T, Mohamedi M, Osaka T, Sarangapani S (2004) Design and fabrication of pumpless small direct methanol fuel cells for portable applications. J Power Sources 137:277–283CrossRef
    108.Amani M, Kazemeini M, Hamedanian M, Pahlavanzadeh H, Gharibi H (2015) Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell. Mater Res Bull 68:166–178CrossRef
    109.Chang J, Feng L, Liu C, Xing W, Hu X (2014) Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy & Environmental Science 7:628–1632CrossRef
    110.Gharibi H, Golmohammadi F, Kheirmand M (2013) Fabrication of MEA based on optimum amount of Co in PdxCo/C alloy nanoparticles as a new cathode for oxygen reduction reaction in passive direct methanol fuel cells. Electrochim Acta 89:212–221CrossRef
    111.Antolini E, Salgado JRC, Santos LGRA, Garcia G, Ticianelli EA, Pastor E, Gonzalez ER (2006) Carbon supported Pt–Cr alloys as oxygen-reduction catalysts for direct methanol fuel cells. J Appl Electrochem 36:355–362CrossRef
    112.Luna AMC, Bonesi A, Triaca WE, Baglio V, Antonucci V, Arico AS (2008) Pt–Fe cathode catalysts to improve the oxygen reduction reaction and methanol tolerance in direct methanol fuel cells. Journal of Solid State Electrochemistry 12:643–649CrossRef
    113.Hogarth MP, Ralph TR (2002) Catalysis for low temperature fuel cells part III: challenges for the direct methanol fuel cell. Platinum Metals Review 46:146–164
    114.Karim NA, Kamarudin SK (2013) An overview on non-platinum cathode catalysts for direct methanol fuel cell. Applied Energy 103:212–220CrossRef
    115.Asteazaran M, Cespedes G, Moreno MS, Bengió S, Castro Lun AM (2015) Searching for suitable catalysts for a passive direct methanol fuel cell cathode. Int J Hydrogen Energ. doi:10.​1016/​j.​ijhydene.​2015.​05.​134
    116.Lee K, Savadogo O, Ishihara A, Mitsushima S, Kamiya N, Ota K (2006) Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells. J Electrochem Soc 153:A20–A24CrossRef
    117.Mathiyarasuz J, Phani KLN (2007) Carbon-supported palladium-cobalt-noble metal (Au, Ag, Pt) nanocatalysts as methanol tolerant oxygen-reduction cathode materials in DMFCs. J Electrochem Soc 154:B1100–B1105CrossRef
    118.Nishantha KG, Sridhar P, Pitchumani S, Shukla AK (2011) A DMFC with methanol-tolerant-carbon-supported-Pt-Pd alloy cathode. J Electrochem Soc 158:B871–B876CrossRef
    119.Wen Z, Liu J, Li J (2008) Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv Mater 20:743–747CrossRef
    120.Kima IT, Choia M, Leeb HK, Shim J (2013) Characterization of methanol-tolerant Pd–WO3 and Pd–SnO2 electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells. Journal of Industrial and Engineering Chemistry 19:813–818CrossRef
    121.Lufrano F, Baglio V, Staiti P, Antonucci V, Arico AS (2013) Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 243:519–534CrossRef
    122.Ahmad H, Kamarudin SK, Hasran UA, Daud WRW (2010) Overview of hybrid membranes for direct-methanol fuel-cell applications. Int J Hydrog Energy 35:2160–2175CrossRef
    123.Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238CrossRef
    124.Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Applied Energy 88:981–1007CrossRef
    125.Rambabu G, Bhat SD (2014) Simultaneous tuning of methanol crossover and ionic conductivity of sPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs: a comparative study in DMFCs. Chem Eng J 243:517–525CrossRef
    126.Diaz LA, Abuin GC, Corti HR (2012) Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. J Membr Sci 411–412:35–44CrossRef
    127.Yuan T, Pu L, Huang Q, Zhang H, Li X, Yang H (2014) An effective methanol-blocking membrane modified with graphene oxide nanosheets for passive direct methanol fuel cells. Electrochim Acta 117:393–397CrossRef
    128.Molla S, Compan V (2011) Performance of composite Nafion/PVA membranes for direct methanol fuel cells. J Power Sources 196:2699–2708CrossRef
    129.Ahmad H, Kamarudin SK, Hasran UA, Daud WRW (2011) A novel hybrid Nafion-PBI-ZP membrane for direct methanol fuel cells. Int J Hydrog Energy 36:14668–14677CrossRef
    130.Chiu KF, Chen YR, Lin HC, Ho WH (2010) PTFE coated Nafion proton conducting membranes for direct methanol fuel cells. Surf Coat Technol 205:1647–1650CrossRef
    131.Tian AH, Kim JY, Shi JY, Lee K, Kim K (2009) Surface-modified Nafion membrane by trioctylphosphine-stabilized palladium nanoparticles for DMFC applications. J Phys Chem Solid 70:1207–1212CrossRef
    132.Carrette L, Friedric KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39CrossRef
    133.Hamnett A (1997) Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today 38:445–457CrossRef
    134.Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry 60:267–273CrossRef
    135.Ochal P, Fuente JLG, Tsypkin M, Seland F, Sunde S, Muthuswamy N, Ronning M, Chen D, Garcia S, Alayoglu S, Eichhorn B (2011) CO stripping as an electrochemical tool for characterization of Ru@Pt core-shell catalysts. J Electroanal Chem 655:140–146CrossRef
    136.Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110CrossRef
    137.Sahin O, Kivrak H (2013) A comparative study of electrochemical methods on Pt–Ru DMFC anode catalysts: the effect of Ru addition. Int J Hydrog Energy 38:901–909CrossRef
    138.Hyun MS, Kim SK, Lee B, Peck D, Shul Y, Jung D (2008) Effect of NaBH4 concentration on the characteristics of PtRu/C catalyst for the anode of DMFC prepared by the impregnation method. Catalysis Today 132:138–145CrossRef
    139.Han K, Lee J, Kim H (2006) Preparation and characterization of high metal content Pt–Ru alloy catalysts on various carbon blacks for DMFCs. Electrochim Acta 52:1697–1702CrossRef
    140.Xiong L, Manthiram A (2005) Catalytic activity of Pt–Ru alloys synthesized by a microemulsion method in direct methanol fuel cells. Solid State Ion 176:385–392CrossRef
    141.Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119CrossRef
    142.Basri S, Kamarudin SK, Daud WRW, Yaakub Z (2010) Nanocatalyst for direct methanol fuel cell (DMFC). Inter J Hydrog Energy 35:7957–7970CrossRef
    143.Aarnio AS, Borghei M, Anoshkin IV, Nasibulin AG, Kauppinen EI, Ruiz V, Kallio T (2012) Durability of different carbon nanomaterial supports with PtRu catalyst in a direct methanol fuel cell. Int J Hydrog Energy 37:3415–3424CrossRef
    144.Arikan T, Kannan AM, Kadirgan F (2013) Binary Pt–Pd and ternary Pt–Pd–Ru nanoelectrocatalysts for direct methanol fuel cells. Int J Hydrog Energy 38:2900–2907CrossRef
    145.Cho YH, Kim OH, Chung DY, Choe H, Cho YH, Sung YE (2014) PtPdCo ternary electrocatalyst for methanol tolerant oxygen reduction reaction in direct methanol fuel cell. Appl Catal Environ 154–155:309–315CrossRef
    146.Tsiouvaras N, Huerta MVM, Paschos O, Stimming U, Fierro JLG, Pena MA (2010) PtRuMo/C catalysts for direct methanol fuel cells: effect of the pretreatment on the structural characteristics and methanol electrooxidation. Int J Hydrog Energy 35:11478–11488CrossRef
    147.Neburchilov V, Wang H, Zhang J (2007) Low Pt content Pt–Ru–Ir–Sn quaternary catalysts for anodic methanol oxidation in DMFC. Electrochem Commun 9:1788–1792CrossRef
    148.Kim JH, Kwon SY, Bhattacharjya D, Chai GS, Yu JS (2013) High-performance quaternary PtRuIrNi electrocatalysts with hierarchical nanostructured carbon support. J Catal 306:133–145CrossRef
    149.Shobha T, Aravinda CL, Bera P, Devi LG, Mayanna SM (2003) Characterization of Ni-Pd alloy as anode for methanol oxidative fuel cell. Mater Chem Phys 80:656–661CrossRef
    150.Santhosh P, Gopalan A, Lee KP (2006) Gold nanoparticles dispersed polyaniline grafted multiwall carbon nanotubes as newer electrocatalysts: preparation and performances for methanol oxidation. J Catal 238:177–185CrossRef
    151.Lu X, Wang H, Zhang S, Cui D, Wang Q (2009) Synthesis, characterization and electrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation. Solid State Sciences 11:428–432CrossRef
    152.Serov A, Kwak C (2009) Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl Catal Environ 90:313–320CrossRef
    153.Wang M, Guo DJ, Li HL (2005) High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. Journal of Solid State Chemistry 178:1996–2000CrossRef
    154.Tiwari JN, Tiwari RN, Singh G, Kim KS (2013) Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2:553–578CrossRef
    155.Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119CrossRef
    156.Wee JH (2007) A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries. J Power Sources 173:424–436CrossRef
    157.Knights SD, Colbow KM, St-Pierre J, Wilkinson DP (2004) Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 127:127–134CrossRef
    158.Cha HC, Chen CY, Shiu JY (2009) Investigation on the durability of direct methanol fuel cells. J Power Sources 192:451–456CrossRef
    159.Zainoodin AM, Kamarudin SK, Masdar MS, Daud WRW, Mohamad AB, Sahari J (2014) Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation. Applied Energy 135:364–372CrossRef
    160.Sarma LS, Chen CH, Wang GR, Hsueh KL, Huang CP, Sheu HS, Liu DG, Lee JF, Hwang BJ (2007) Investigations of direct methanol fuel cell (DMFC) fading mechanisms. J Power Sources 167:358–365CrossRef
    161.Chen W, Sun G, Guo J, Zhao X, Yan S, Tian J, Tang S, Zhou Z, Xin Q (2006) Test on the degradation of direct methanol fuel cell. Electrochim Acta 51:2391–2399CrossRef
    162.Zhao X, Li W, Murthy A, Jiang Z, Zuo Z, Manthiram A (2013) A DMFC stack operating with hydrocarbon blend membranes and PteRueSne Ce/C and PdeCo/C electrocatalysts. Int J Hydrog Energy 38:7448–7457CrossRef
    163.Bresciani F, Rabissi C, Zago M, Marchesi R, Casalegno A (2015) On the effect of gas diffusion layers hydrophobicity on direct methanol fuel cell performance and degradation. J Power Sources 273:680–687CrossRef
    164.Cheng X, Peng C, You M, Liu L, Zhang Y, Fan Q (2006) Characterization of catalysts and membrane in DMFC lifetime testing. Electrochim Acta 51:4620–4625CrossRef
    165.Tang Y, Yuan W, Pan M, Tang B, Li Z, Wan Z (2010) Effects of structural aspects on the performance of a passive air
    eathing direct methanol fuel cell. J Power Sources 195:5628–5636CrossRef
    166.Wu QX, Zhao TS, Chen R, Yang WW (2010) Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol. Int J Hydrogen Energ 35:10547–10555CrossRef
    167.Baglio V, Stassi A, Matera FV, Blasi AD, Antonucci V, Arico AS (2008) Optimization of properties and operating parameters of a passive DMFC mini-stack at ambient temperature. J Power Sources 180:797–802CrossRef
    168.Yuan Z, Zhang Y, Leng J, Zhao Y, Liu X (2012) Performance of air
    eathing direct methanol fuel cell with Au-coated aluminum current collectors. Int J Hydrog Energy 37:2571–2578CrossRef
    169.Guo JW, Xie XF, Wang JH, Shang YM (2008) Effect of current collector corrosion made from printed circuit board (PCB) on the degradation of self
    eathing direct methanol fuel cell stack. Electrochim Acta 53:3056–3064CrossRef
    170.Yang C, Wang J, Xie X, Wang S, Mao Z, Wang H (2012) Electrochemical behavior of surface treated metal bipolar plates used in passive direct methanol fuel cell. Int J Hydrog Energy 37:867–872CrossRef
    171.Feng L, Cai W, Li C, Zhang J, Liu C, Xing W (2012) Fabrication and performance evaluation for a novel small planar passive direct methanol fuel cell stack. Fuel 94:401–408CrossRef
    172.Brescian F, Rabissi C, Casalegno A, Zago M, Marchesi R (2014) Experimental investigation on DMFC temporary degradation. Int J Hydrog Energy 39:21647–21656CrossRef
    173.Rashidi R, Dincer I, Naterer GF, Berg P (2009) Performance evaluation of direct methanol fuel cells for portable applications. J Power Sources 187:509–516CrossRef
    174.Wu H, Yuan T, Huang Q, Zhang H, Zou Z, Zheng J, Yang H (2014) Polypyrrole nanowire networks as anodic micro-porous layer for passive direct methanol fuel cells. Electrochim Acta 141:1–5CrossRef
    175.Chen P, Wu H, Yuan T, Zou Z, Zhang H, Zheng J, Yang H (2014) Electronspun nanofiber network anode for a passive direct methanol fuel cell. J Power Sources 255:70–75CrossRef
    176.Zainoodin AM, Kamarudin SK, Masdar MS, Daud WRW, Mohamad AB, Sahari J (2014) High power direct methanol fuel cell with a porous carbon nanofiber anode layer. Applied Energy 113:946–954CrossRef
    177.Yuan T, Kang Y, Chen J, Du C, Qiao Y, Xue X, Zou Z, Yang H (2011) Enhanced performance of a passive direct methanol fuel cell with decreased Nafion aggregate size within the anode catalytic layer. Int J Hydrog Energy 36:10000–10005CrossRef
    178.Huang Q, Jiang J, Chai J, Yuan T, Zhang H, Zou Z, Zhang X, Yang H (2014) Construction of porous anode by sacrificial template for a passive direct methanol fuel cell. J Power Sources 262:213–218CrossRef
    179.Daimon H, Kurobe Y (2006) Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements. Catalysis Today 111:182–187CrossRef
    180.Arbizzani C, Biso M, Manferrari E, Mastragostino M (2008) Passive DMFCs with PtRu catalyst on poly(3,4-ethylene dioxythiophene)-polystyrene-4-sulphonate support. J Power Sources 180:41–45CrossRef
    181.Arbizzani C, Beninati S, Soavi F, Varzi A, Mastragostino M (2008) Supported PtRu on mesoporous carbons for direct methanol fuel cells. J Power Sources 185:615–620CrossRef
    182.Yuan W, Zhang X, Zhang S, Hu J, Li Z, Tang Y (2015) Lightweight current collector based on printed-circuit-board technology and its structural effects on the passive air
    eathing direct methanol fuel cell. Renew Energy 81:664–670CrossRef
    183.Sun J, Guo T, Deng H, Jiao K, Huang X (2015) Effect of electrode variable contact angle on the performance and transport characteristics of passive direct methanol fuel cells. Int J Hydrog Energy 40:10568–10587CrossRef
    184.Wang L, He M, Hu Y, Zhang Y, Liu X, Wang G (2015) A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications. Energy 229–235
    185.Baglio V, Stassi A, Modica E, Antonucci V, Arico AS, Caracino P, Ballabio O, Colombo M, Kopnin E (2010) Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane. Electrochim Acta 55:6022–6027CrossRef
  • 作者单位:Naveen K. Shrivastava (1)
    Shashikant B. Thombre (1)
    Rajkumar B. Chadge (2)

    1. Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
    2. Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, 441110, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
This paper provides an overview of technological challenges and recent advances in the liquid feed passive direct methanol fuel cells (DMFC). Important issues viz. species management, thermal management, methanol crossover, sluggish anode kinetics, durability and stability, and cost are discussed in detail. Methanol management, water management, oxygen management, and carbon dioxide management are covered under species management. The present technological status is given and future research directions are suggested.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700